Pancreatic stellate cell: physiologic role, role in fibrosis and cancer.

Curr Opin Gastroenterol

Pancreatic Research Group, South Western Sydney Clinical School, University of New South Wales, and Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia.

Published: September 2015

Purpose Of Review: Ever since the first descriptions of methods to isolate pancreatic stellate cells (PSCs) from rodent and human pancreas 17 years ago, rapid advances have been made in our understanding of the biology of these cells and their functions in health and disease. This review updates recent literature in the field, which indicates an increasingly complex role for the cells in normal pancreas, pancreatitis and pancreatic cancer.

Recent Findings: Work reported over the past 12 months includes improved methods of PSC immortalization, a role for PSCs in islet fibrosis, novel factors causing PSC activation as well as those inducing quiescence, and translational research aimed at inhibiting the facilitatory effects of PSCs on disease progression in chronic pancreatitis as well as pancreatic cancer.

Summary: Improved understanding of the role of PSCs in pancreatic pathophysiology has prompted a focus on translational studies aimed at developing novel approaches to modulate PSC function in a bid to improve clinical outcomes of two major fibrotic diseases of the pancreas: chronic pancreatitis and pancreatic cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MOG.0000000000000196DOI Listing

Publication Analysis

Top Keywords

pancreatic stellate
8
pancreatitis pancreatic
8
role pscs
8
chronic pancreatitis
8
pancreatic
6
role
5
stellate cell
4
cell physiologic
4
physiologic role
4
role role
4

Similar Publications

MIF/CD74 axis in hepatic stellate cells mediates HBV-related liver fibrosis.

Int Immunopharmacol

January 2025

Department of Transplantation Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130061, China. Electronic address:

Chronic hepatitis B virus (HBV) infection is a major risk factor for liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Despite advances in understanding HBV-related liver diseases, effective therapeutic strategies remain limited. Macrophage migration inhibitory factor (MIF) has been implicated in various inflammatory and fibrotic conditions, but its role in HBV-induced liver fibrosis has not been fully explored.

View Article and Find Full Text PDF

Impact of acute schistosomiasis mansoni and concurrent type 1 diabetes on pancreatic architecture in mice.

Exp Parasitol

December 2024

Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, Medical Sciences College (FCM), Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil.

It is not well understood how type 1 diabetes (T1D) and concomitant acute schistosomiasis mansoni affect pancreatic architecture. Male Swiss mice were administered streptozotocin (single 100 mg/kg i.p.

View Article and Find Full Text PDF

Background: Fibroblast activation protein (FAP) is an attractive target for cancer theranostics. Although FAP-targeted nuclear imaging demonstrated promising clinical results, only sub-optimal results are reported for targeted radionuclide therapy (TRT). Preclinical research is crucial in selecting promising FAP-targeted radiopharmaceuticals and for obtaining an increased understanding of factors essential for FAP-TRT improvement.

View Article and Find Full Text PDF

Nanomedicine regulating PSC-mediated intercellular crosstalk: Mechanisms and therapeutic strategies.

Acta Pharm Sin B

November 2024

State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.

Pancreatic fibrosis (PF) is primarily distinguished by the stimulation of pancreatic stellate cells (PSCs) and excessive extracellular matrix deposition, which is the main barrier impeding drug delivery and distribution. Recently, nanomedicine, with efficient, targeted, and controllable drug release characteristics, has demonstrated enormous advantages in the regression of pancreas fibrotic diseases. Notably, paracrine signals from parenchymal and immune cells such as pancreatic acinar cells, islet cells, pancreatic cancer cells, and immune cells can directly or indirectly modulate PSC differentiation and activation.

View Article and Find Full Text PDF

Rationale: Pancreatic stellate cells (PSCs) produce a collagen-rich connective tissue in chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC). Ca-permeable ion channels such as ORAI1 are known to affect PSC proliferation and myofibroblastic phenotype. However, it is unknown whether these channels play a role in collagen secretion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!