Ciliopathies encompass a group of genetic disorders characterized by defects in the formation, maintenance, or function of cilia. Retinitis pigmentosa (RP) is frequently one of the clinical features presented in diverse ciliopathies. RP is a heterogeneous group of inherited retinal disorders, characterized by the death of photoreceptors and affecting more than one million individuals worldwide. The retinitis pigmentosa GTPase regulator (RPGR) gene is mutated in up to 20% of all RP patients. RPGR protein has different interacting partners to function in ciliary protein trafficking. In this review, we specifically focus on RPGR and its two interacting proteins: RPGRIP1 and RPGRIP1L. We summarize the function of the three proteins and highlight recent studies that provide insight into the cellular function of those proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466403PMC
http://dx.doi.org/10.1155/2015/414781DOI Listing

Publication Analysis

Top Keywords

rpgr interacting
8
interacting proteins
8
disorders characterized
8
retinitis pigmentosa
8
role rpgr
4
proteins
4
proteins ciliopathies
4
ciliopathies ciliopathies
4
ciliopathies encompass
4
encompass group
4

Similar Publications

Microtubules, composed of conserved α/β-tubulin dimers, undergo complex post-translational modifications (PTMs) that fine-tune their properties and interactions with other proteins. Cilia exhibit several tubulin PTMs, such as polyglutamylation, polyglycylation, detyrosination, and acetylation, with functions that are not fully understood. Mutations in AGBL5, which encodes the deglutamylating enzyme CCP5, have been linked to retinitis pigmentosa, suggesting that altered polyglutamylation may cause photoreceptor cell degeneration, though the underlying mechanisms are unclear.

View Article and Find Full Text PDF

RPGR is a guanine nucleotide exchange factor for the small GTPase RAB37 required for retinal function via autophagy regulation.

Cell Rep

April 2024

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China. Electronic address:

Although the small GTPase RAB37 acts as an organizer of autophagosome biogenesis, the upstream regulatory mechanism of autophagy via guanosine diphosphate (GDP)-guanosine triphosphate (GTP) exchange in maintaining retinal function has not been determined. We found that retinitis pigmentosa GTPase regulator (RPGR) is a guanine nucleotide exchange factor that activates RAB37 by accelerating GDP-to-GTP exchange. RPGR directly interacts with RAB37 via the RPGR-RCC1-like domain to promote autophagy through stimulating exchange.

View Article and Find Full Text PDF

Background: The mutations in the (retinitis pigmentosa GTPase regulator) gene are the most common cause of X-linked retinitis pigmentosa (XLRP), a rare genetic disorder affecting the photoreceptor cells in the retina. Several reported cases identified this gene as a genetic link between retinitis pigmentosa (RP) and primary ciliary dyskinesia (PCD), characterised by impaired ciliary function predominantly in the respiratory tract. Since different mutations in the same gene can result in various clinical manifestations, it is important to describe a correlation between the gene variant and the observed phenotype.

View Article and Find Full Text PDF

Aims: This study aimed to construct a lymph node metastasis-related gene signature to predict prognosis and immune infiltration in patients with cervical cancer.

Methods: Clinical and RNA sequencing data of 193 patients with cervical cancer, which were divided into lymph node metastasis (N1) and non-lymph node metastasis (N0) groups, were acquired from TCGA. Differentially expressed genes (DEGs) between the N1 and N0 groups were detected, and protein-protein interaction combined with LASSO analysis was conducted to further screen lymph node metastasis-related genes.

View Article and Find Full Text PDF

Background: Ciliopathies responsible for retinitis pigmentosa can also cause systemic manifestations. RPGR is a ciliary gene and pathogenic variants in RPGR cause a retinal ciliopathy, the commonest cause of X-linked recessive retinitis pigmentosa. The RPGR protein interacts with numerous other ciliary proteins present in the transition zone of both motile and sensory cilia, and may play an important role in regulating ciliary protein transport.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!