A selection of cyclic and acyclic acetylenic scaffolds bearing two tetrathiafulvalene (TTF) units was prepared by different metal-catalyzed coupling reactions. The bridge separating the two TTF units was systematically changed from linearly conjugated ethyne, butadiyne and tetraethynylethene (trans-substituted) units to a cross-conjugated tetraethynylethene unit, placed in either acyclic or cyclic arrangements. The cyclic structures correspond to so-called radiaannulenes having both endo- and exocyclic double bonds. Interactions between two redox-active TTF units in these molecules were investigated by cyclic voltammetry, UV-vis-NIR and EPR absorption spectroscopical methods of the electrochemically generated oxidized species. The electron-accepting properties of the acetylenic cores were also investigated electrochemically.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464444PMC
http://dx.doi.org/10.3762/bjoc.11.104DOI Listing

Publication Analysis

Top Keywords

ttf units
12
units
5
cyclic
5
interactions tetrathiafulvalene
4
tetrathiafulvalene units
4
units dimeric
4
dimeric structures
4
structures influence
4
influence cyclic
4
cyclic cores
4

Similar Publications

Recycling e-waste into gold-loaded covalent organic framework catalysts for terminal alkyne carboxylation.

Nat Commun

December 2024

Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA.

The rising demand for gold requires innovative methods for its recovery from e-waste. Here we present the synthesis of two tetrazine-based vinyl-linked covalent organic frameworks: TTF-COF and TPE-COF that adsorb gold ions and nanoparticles and catalyze the carboxylation of terminal alkynes. These covalent organic frameworks have low band gaps and high photocurrent responses.

View Article and Find Full Text PDF

The introduction of 4,5-dihydroazuleno[2,1,8-ija]azulene as a central core between two 1,4-dithiafulvene (DTF) units provides a novel class of extended tetrathiafulvalene (TTF) electron donors. Herein we present the synthesis of such compounds with the azulenoazulene further expanded by annulation to benzene, naphthalene, or thiophene rings. Moreover, unsymmetrical donor-acceptor chromophores with one DTF and one carbonyl at the central core are presented.

View Article and Find Full Text PDF

Electron-molecular vibration coupling in trimerized isostructural mixed-stack complexes (EDT-TTF-I)TCNQF (n = 0, 1, 2).

Spectrochim Acta A Mol Biomol Spectrosc

March 2025

Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Campus de Beaulieu, 35042 Rennes, France.

Infrared and Raman spectra of three isostructural charge transfer complexes (EDT-TTF-I)TCNQF (n = 0, 1, 2) are studied. The planar molecules in these complexes are arranged in one-dimensional stacks formed by donor-acceptor-donor (DAD) centrosymmetric trimeric units with a different degree of charge transfer between D and A. In the IR electronic spectra two bands attributed to D → D and D → A charge transfer transitions are distinguished.

View Article and Find Full Text PDF

The synthesis and whole characterization by a multitechnique approach of an unprecedented dysprosium(iii) 2D metal organic framework (MOF), involving the redox-active tetrathiafulvalene (TTF)-based linker TTF-tetracarboxylate (TTF-TC), are herein reported. The single-crystal X-ray structure, formulated as [Dy(TTF-TC)(HO)]·21HO (1), reveals a complex 2D topology, with hexanuclear Dy clusters as secondary building units (SBUs) interconnected by five linkers, stacked almost parallel in each layer and eclipsed along the [111] direction, leading to the formation of 1D channels filled by water molecules. The mixed valence of the TTF units is confirmed by both bond distance analysis, Raman microscopy and diffuse reflectance spectroscopy, and further supported by band structure calculations, which also predict activated conductivity for this material.

View Article and Find Full Text PDF

This study examined sex-related differences in fatigability and neuromuscular responses using surface electromyographic (sEMG) and mechanomyographic (sMMG) amplitude (AMP) and frequency (MPF) during fatiguing, maximal, bilateral isometric leg extensions.Twenty recreationally active males and females with resistance training experience performed continuous, maximal effort, bilateral isometric leg extensions until their force reduced by 50%. Linear mixed effect models analyzed patterns of force, sEMG, and sMMG AMP and MPF responses in the dominant limb.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!