Effect of Catalase and Sodium Fluoride on Human Enamel bleached with 35% Carbamide Peroxide.

Int J Clin Pediatr Dent

Reader, Department of Oral and Maxillofacial Surgery, People's College of Dental Sciences and Research Centre, Bhopal Madhya Pradesh, India.

Published: June 2015

Aim: To evaluate the effects of postbleaching antioxidant application fluoridation treatment on the surface morphology and microhardness of human enamel.

Materials And Methods: Ten freshly extracted human maxillary central incisors were cut at cementoenamel junction. Crown portion was sectioned into six slabs which were divided into five groups: group A - untreated controls; group B - 35% carbamide peroxide (CP); group C - 35% CP and catalase; group D - treatment with 35% CP and 5% sodium fluoride; group E - 35% CP, catalase and 5% sodium fluoride. Thirty-five percent carbamide peroxide application included two applications of 30 minutes each at a 5-day interval. After treatment, the slabs were thoroughly washed with water for 10 seconds and stored in artificial saliva at 37°C until the next treatment. Two percent sodium fluoride included application for 5 minutes. Three catalase included application for 3 minutes.

Results: After 5 days, groups B and C showed significantly decreased enamel microhardness compared to control. Group D specimens showed relatively less reduction in enamel micro-hardness than group C specimens. There is a marked increase in enamel microhardness in group E specimens.

Conclusions: Fluoride take up was comparatively enhanced after catalase application resulting in less demineralization and increased microhardness. How to cite this article: Thakur R, Shigli AL, Sharma DS, Thakur G. Effect of Catalase and Sodium Fluoride on Human Enamel bleached with 35% Carbamide Peroxide. Int J Clin Pediatr Dent 2015;8(1):12-17.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4472865PMC
http://dx.doi.org/10.5005/jp-journals-10005-1276DOI Listing

Publication Analysis

Top Keywords

sodium fluoride
20
carbamide peroxide
16
catalase sodium
12
35% carbamide
12
group 35%
12
fluoride human
8
human enamel
8
enamel bleached
8
bleached 35%
8
group
8

Similar Publications

Maintaining good oral hygiene is essential for preventing and managing oral health problems. This systematic review aimed to identify and assess clinical practice guidelines on oral hygiene, focusing on quality and key areas. A comprehensive search was conducted in PubMed, CINAHL, Scopus, Cochrane, and organizational websites.

View Article and Find Full Text PDF

The rising demand for energy storage calls for technological advancements to address the growing needs. In this context, sodium-ion (Na-ion) batteries have emerged as a potential complementary technology to lithium-ion batteries (Li-ion). Among other materials, NaV(PO)F (NVPF) is a promising cathode for Na-ion batteries due to its high operating voltage and good energy density.

View Article and Find Full Text PDF

The Effect of Oral Care Product Ingredients on Oral Pathogenic Bacteria Transcriptomics Through RNA-Seq.

Microorganisms

December 2024

Oral Care Product Development, The Procter & Gamble Company, Cincinnati, OH 45202, USA.

Various ingredients are utilized to inhibit the growth of harmful bacteria associated with cavities, gum disease, and bad breath. However, the precise mechanisms by which these ingredients affect the oral microbiome have not been fully understood at the molecular level. To elucidate the molecular mechanisms, a high-throughput bacterial transcriptomics study was conducted, and the gene expression profiles of six common oral bacteria, including two Gram-positive bacteria (, ) and four Gram-negative bacteria (, , , and ), were analyzed.

View Article and Find Full Text PDF

Fluoride Induces Toxic Effects on the A549 Pulmonary Cell Line at Non-cytotoxic Concentrations.

Biol Trace Elem Res

January 2025

Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, AvInstituto Politécnico Nacional 2508, Col San Pedro ZacatencoCDMX, C.P. 07360, Mexico City, Mexico.

Fluoride is emitted into the air not only through gas emissions but also from volcanic ash, leading to contact via inhalation. Therefore, the objective of the present study was to evaluate the cellular and biochemical responses in the A549 cell line after exposure to NaF (sodium fluoride) concentrations lower than those previously used in other studies to determine the impact on the lung epithelium. A549 cells were exposed to different concentrations (0.

View Article and Find Full Text PDF

A preclinical study on effect of betanin on sodium fluoride induced hepatorenal toxicity in wistar rats.

J Complement Integr Med

January 2025

Department of Basic Medical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.

Article Synopsis
  • Excessive fluoride exposure can cause oxidative stress and damage metabolic organs, leading to toxicity in the liver and kidneys.
  • A study was conducted on Wistar rats divided into four groups, with some receiving sodium fluoride alone and others receiving fluoride with different doses of betanin from beetroot for 90 days.
  • Results showed that betanin treatment reduced markers of liver and kidney damage and improved oxidative stress indicators, suggesting it could potentially protect against fluoride-induced organ toxicity.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!