Parkinson's disease (PD), primarily caused by selective degeneration of midbrain dopamine (mDA) neurons, is the most prevalent movement disorder, affecting 1-2% of the global population over the age of 65. Currently available pharmacological treatments are largely symptomatic and lose their efficacy over time with accompanying severe side effects such as dyskinesia. Thus, there is an unmet clinical need to develop mechanism-based and/or disease-modifying treatments. Based on the unique dual role of the nuclear orphan receptor Nurr1 for development and maintenance of mDA neurons and their protection from inflammation-induced death, we hypothesize that Nurr1 can be a molecular target for neuroprotective therapeutic development for PD. Here we show successful identification of Nurr1 agonists sharing an identical chemical scaffold, 4-amino-7-chloroquinoline, suggesting a critical structure-activity relationship. In particular, we found that two antimalarial drugs, amodiaquine and chloroquine stimulate the transcriptional function of Nurr1 through physical interaction with its ligand binding domain (LBD). Remarkably, these compounds were able to enhance the contrasting dual functions of Nurr1 by further increasing transcriptional activation of mDA-specific genes and further enhancing transrepression of neurotoxic proinflammatory gene expression in microglia. Importantly, these compounds significantly improved behavioral deficits in 6-hydroxydopamine lesioned rat model of PD without any detectable signs of dyskinesia-like behavior. These findings offer proof of principle that small molecules targeting the Nurr1 LBD can be used as a mechanism-based and neuroprotective strategy for PD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507186 | PMC |
http://dx.doi.org/10.1073/pnas.1509742112 | DOI Listing |
Acta Neuropathol Commun
December 2024
Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China.
Midbrain dopamine (mDA) neurons participate in a wide range of brain functions through an intricate regulation of DA biosynthesis. The epigenetic factors and mechanisms in this process are not well understood. Here we report that histone demethylase JMJD3 is a critical regulator for DA biosynthesis in adult mouse mDA neurons.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish 45511, Egypt.
Unlabelled: Despite a deep understanding of Parkinson's disease (PD) and levodopa-induced dyskinesia (LID) pathogenesis, current therapies are insufficient to effectively manage the progressive nature of PD or halt LID. Growing hypotheses suggested the NOD-like receptor 3 (NLRP3) inflammasome and orphan nuclear receptor-related 1 (Nurr1)/glycogen synthase kinase-3β (GSK-3β) and peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α)/sirtuin 3 (SIRT3) pathways as potential avenues for halting neuroinflammation and oxidative stress in PD.
Aims: This study investigated for the first time the neuroprotective effect of canagliflozin against PD and LID in rotenone-intoxicated rats, emphasizing the crosstalk among the NLRP3/caspase-1 cascade, PGC-1α/SIRT3 pathway, mammalian target of rapamycin (mTOR)/beclin-1, and Nurr1/β-catenin/GSK-3β pathways as possible treatment strategies in PD and LID.
Neurotox Res
December 2024
Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria.
Pyrethroids, synthetic insecticides used in pest management, pose health risks, particularly neurotoxic effects, with studies linking exposure to a neurodegenerative disorder. This review examines the neurotoxic mechanisms of pyrethroids analyzing literature from animal model studies. It identifies critical targets for neurotoxicity, including ion channels, oxidative stress, inflammation, neuronal cell loss, and mitochondrial dysfunction.
View Article and Find Full Text PDFBiol Pharm Bull
November 2024
Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University.
Nurr1 (NR4A2) is a member of nuclear receptor superfamily that regulates gene transcription in midbrain dopaminergic neurons and also inhibits nuclear factor-κB-mediated inflammatory responses in brain microglial cells. To date, various compounds have been reported to stimulate transcriptional activity of Nurr1 on neuronal genes, but their anti-inflammatory actions are poorly characterized. The present study examined the effects of three kinds of Nurr1 ligands, amodiaquine, 1,1-bis(3'-indolyl)-1-(p-chlorophenyl)-methane (C-DIM12) and 5-chloronaphthalen-1-amine (5-CNA), on inflammatory responses of microglial BV-2 cells.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Premedicine, College of Medicine, Hanyang University, FTC12, 222 Wangsimni-ro, Seoul 04763, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!