Background: Glucose-lowering effects of Moringa oleifera extracts have been reported. However, the mechanism for its hypoglycemic effects is not yet understood. This study investigated the effect of oral administration of methanolic extracts of M. oleifera (MOLE) on glucose tolerance, glycogen synthesis, and lipid metabolism in rats with alloxan-induced diabetes.

Methods: MOLE was screened for key phytochemicals and its total flavonoids and phenolic contents were quantified. Diabetes was induced by intraperitoneal injection of 120 mg/kg BW alloxan. Normal and diabetic control rats received saline, while rats in other groups received 300 or 600 mg/kg body weight of MOLE or metformin (100 mg/kg body weight of metformin) for 6 weeks. Food intake and body weight were monitored throughout the experiment. Intraperitoneal glucose tolerance was assessed and serum glucose, insulin, and lipids were measured at the end of the experiment. Liver and muscle glycogen synthase activities, glycogen content, and glucose uptake were determined.

Results: Administration of MOLE did not affect food intake but inhibited weight loss, significantly (p<0.01) improved glucose tolerance, and increased serum insulin levels by 1.3-1.7-fold (p<0.01). MOLE treatment significantly (p<0.001) reduced serum concentrations of triglyceride, total cholesterol, and low-density lipoprotein (LDL)-cholesterol and enhanced serum level of high-density lipoprotein (HDL) by 2.4- to 3.2-fold (p<0.001). Glycogen synthase activities and glycogen contents were higher in MOLE-treated rats compared with rats receiving metformin or saline and the extract improved glucose uptake by 49%-59% (p<0.01).

Conclusions: These results showed that hypoglycemic effects of MOLE might be mediated through the stimulation of insulin release leading to enhanced glucose uptake and glycogen synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1515/jbcpp-2014-0129DOI Listing

Publication Analysis

Top Keywords

glucose tolerance
12
body weight
12
moringa oleifera
8
tolerance glycogen
8
glycogen synthesis
8
synthesis lipid
8
lipid metabolism
8
mg/kg body
8
food intake
8
glucose
5

Similar Publications

Background: Gestational Diabetes Mellitus (GDM) is a common complication during pregnancy. Late diagnosis can have significant implications for both the mother and the fetus. This research aims to create an early prediction model for GDM in the first trimester of pregnancy.

View Article and Find Full Text PDF

Weight cycling exacerbates glucose intolerance and hepatic triglyceride storage in mice with a history of chronic high fat diet exposure.

J Transl Med

January 2025

Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.

Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.

View Article and Find Full Text PDF

Wu-Mei-Wan enhances brown adipose tissue function and white adipose browning in obese mice via upregulation of HSF1.

Chin Med

January 2025

Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.

Methods: HFD-induced obese mice were treated with WMW.

View Article and Find Full Text PDF

Iron-Mediated Regulation in Adipose Tissue: A Comprehensive Review of Metabolism and Physiological Effects.

Curr Obes Rep

January 2025

Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China.

Purpose Of Review: Review the latest data regarding the intersection of adipose tissue (AT) and iron to meet the needs of AT metabolism and the progression of related diseases.

Recent Findings: Iron is involved in fundamental biological metabolic processes and is precisely fine-tuned within the body to maintain cellular, tissue and even systemic iron homeostasis. AT not only serves as an energy storage depot but also represents the largest endocrine organ in the human body, maintaining systemic metabolic homeostasis.

View Article and Find Full Text PDF

Purpose Of Review: Polycystic Ovary Syndrome (PCOS) is a complex endocrine disorder with several causal pathways including impaired glucose tolerance, insulin resistance (IR), compensatory hyperinsulinemia and excess androgens (hyperandrogenism). This heterogeneous condition causes a range of reproductive, metabolic and psychological implications, the severity of which can differ between individuals depending on factors such as age, diet, ethnicity, genetics, medication, contraceptive use, adiposity, and Body Mass Index (BMI).

Recent Findings: Dietary interventions that focus on a low glycaemic index and glucose control are an efficient first-line dietary solution for the management of impaired glucose tolerance and IR, which subsequently improves weight management, quality of life and PCOS-related symptoms in individuals with this condition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!