There is considerable interest in how the fate of adipose-derived stem cells is determined. Physical stimuli play a crucial role in skeletogenesis and in cartilage repair and regeneration. In the present study, we investigated the comparative and interactive effects of dynamic compression and SRY-related high-mobility group box gene-9 (SOX-9) on chondrogenesis of rabbit adipose-derived stem cells in three-dimensional gradual porous PLGA (polylactic-co-glycolic acid) composite scaffolds. Articular cartilage is stratified into zones delineated by characteristic changes in cellular, matrix, and nutritive components. As a consequence, biochemical and biomechanical properties vary greatly between the different zones, giving the tissue its unique structure and, thus, the ability to cope with extreme loading. The effects on development of the cartilage were examined using a combination of computational modeling to predict alterations in biophysical stimuli, detailed morphometric analysis of 3D digital representations. In addition, early chondrogenic differentiation was assessed via real-time PCR of mRNA expression levels for bone- and cartilage-specific gene markers. Our findings define the important role of dynamic compression combined with SOX-9 overexpression during in vitro generation of tissue-engineering cartilage and suggest that a 3D gradual porous PLGA composite scaffold may benefit articular cartilage tissue engineering in cartilage regeneration for better force distribution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.35530 | DOI Listing |
Nat Commun
January 2025
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
The kinetics of dislocation reactions, such as dislocation multiplication, controls the plastic deformation in crystals beyond their elastic limit, therefore critical mechanisms in a number of applications in materials science. We present a series of large-scale molecular dynamics simulations that shows that one such type of reactions, the nucleation of dislocation at free surfaces, exhibit unconventional kinetics, including unexpectedly large nucleation rates under compression, very strong entropic stabilization under tension, as well as strong non-Arrhenius behavior. These unusual kinetics are quantitatively rationalized using a variational transition state theory approach coupled with an efficient numerical scheme for the estimation of vibrational entropy changes.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
Department of Electronics Engineering, Pusan National University, Busan, South Korea.
The amount of information contained in speech signals is a fundamental concern of speech-based technologies and is particularly relevant in speech perception. Measuring the mutual information of actual speech signals is non-trivial, and quantitative measurements have not been extensively conducted to date. Recent advancements in machine learning have made it possible to directly measure mutual information using data.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Robotics Engineering, Hanyang University, 55 Hanyangdaehak-ro, Ansan, Gyeonggi-do 15588, Republic of Korea.
This study investigates the corrosion inhibition effects of eco-friendly conifer cone extract (CCE) on steel rebars embedded in cement mortar exposed to 3.5% NaCl under alternate wet/dry cycles. CCE concentrations of 0, 0.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
Iliac Vein Compression Syndrome (IVCS) is a common risk factor for deep vein thrombosis in the lower extremities. The objective of this study was to investigate whether employing a porous medium model to simulate the compressed region of an iliac vein could improve the reliability and accuracy of Computational Fluid Dynamics (CFD) analysis outcomes of IVCS. Pre-operative Computed Tomography (CT) scan images of patients with IVCS were utilized to reconstruct models illustrating both the compression and collateral circulation of the iliac vein.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
Human cerebral organoids serve as a quintessential model for deciphering the complexities of brain development in a three-dimensional milieu. However, imaging these organoids, particularly when they exceed several millimeters in size, has been curtailed by the technical impediments such as phototoxicity, slow imaging speeds, and inadequate resolution and imaging depth. Addressing these pivotal challenges, our study has pioneered a high-speed scanning microscope, synergistically coupled with advanced computational image processing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!