Identification of a novel MKS locus defined by TMEM107 mutation.

Hum Mol Genet

Department of Genetics and Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia, Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia

Published: September 2015

Meckel-Gruber syndrome (MKS) is a perinatally lethal disorder characterized by the triad of occipital encephalocele, polydactyly and polycystic kidneys. Typical of other disorders related to defective primary cilium (ciliopathies), MKS is genetically heterogeneous with mutations in a dozen genes to date known to cause the disease. In an ongoing effort to characterize MKS clinically and genetically, we implemented a gene panel and next-generation sequencing approach to identify the causal mutation in 25 MKS families. Of the three families that did not harbor an identifiable causal mutation by this approach, two mapped to a novel disease locus in which whole-exome sequencing revealed the likely causal mutation as a homozygous splicing variant in TMEM107, which we confirm leads to aberrant splicing and nonsense-mediated decay. TMEM107 had been independently identified in two mouse models as a cilia-related protein and mutant mice display typical ciliopathy phenotypes. Our analysis of patient fibroblasts shows marked ciliogenesis defect with an accompanying perturbation of sonic hedgehog signaling, highly concordant with the cellular phenotype in Tmem107 mutants. This study shows that known MKS loci account for the overwhelming majority of MKS cases but additional loci exist including MKS13 caused by TMEM107 mutation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddv242DOI Listing

Publication Analysis

Top Keywords

causal mutation
12
tmem107 mutation
8
mks
7
tmem107
5
mutation
5
identification novel
4
novel mks
4
mks locus
4
locus defined
4
defined tmem107
4

Similar Publications

[Advances in the genetics of venous thromboembolic disease].

Zhonghua Xue Ye Xue Za Zhi

December 2024

Institute of Hematology, Tongji Medical College Affiliated Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China.

Venous thromboembolism (VTE) is clinically manifested as deep vein thrombosis (DVT) and pulmonary embolism (PE). VTE is the third most prevalent vascular disease after coronary artery and cerebrovascular diseases. VTE is a multifactorial disease caused by the interaction of genetic and acquired risk factors.

View Article and Find Full Text PDF

[Mitoxantrone hydrochloride liposome combined with cytarabine for treating pediatric acute myeloid leukemia with RUNX1∷MTG16 fusion gene: a case report and literature review].

Zhonghua Xue Ye Xue Za Zhi

December 2024

Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China.

This case report presents a patient with pediatric acute myeloid leukemia (AML) with RUNX1∷MTG16, admitted to the Blood Disease Hospital of the Chinese Academy of Medical Sciences in October 2023. He was 13 years old, with a chief complaint of fatigue for 20 days. Bone marrow smear revealed 17.

View Article and Find Full Text PDF

This study aimed to assess the efficacy and safety of gilteritinib combined with chemotherapy in treating newly diagnosed FLT3-mutated acute myeloid leukemia (AML). We retrospectively collected clinical data from 16 patients newly diagnosed with FLT3-mutated AML at Jiangsu Province Hospital. Patients received induction therapy with the classic "3 + 7" regimen or the VA regimen, and all patients were immediately supplied with gilteritinib after detecting FLT3-ITD/TKD mutations.

View Article and Find Full Text PDF

[Pedigree analysis of novel missense mutations causing hereditary coagulation factor Ⅴ deficiency].

Zhonghua Xue Ye Xue Za Zhi

December 2024

Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.

This study aimed to primarily discuss the pathogenesis of hereditary coagulation factor Ⅴ (FⅤ) deficiency in a family with a consanguineous cousin marriage. The coagulation indices of the pedigree (three generations with seven individuals) and the thrombin levels of the proband and his father were assessed. All exons of the F5 gene were analyzed with Sanger sequencing, and a new mutation was confirmed with reverse sequencing.

View Article and Find Full Text PDF

Interpreting Variants of Uncertain Significance in PCD: Abnormal Splicing Caused by a Missense Variant of DNAAF3.

Mol Genet Genomic Med

January 2025

The State Key Laboratory for Complex Severe and Rare Diseases, the State Key Sci-Tech Infrastructure for Translational Medicine, Peking Union Medical College Hospital, Beijing, China.

Background: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia. While approximately 50 genes have been identified, around 25% of PCD patients remain genetically unexplained; elucidating the pathogenicity of specific variants remains a challenge.

Methods: Whole exome sequencing (WES) and Sanger sequencing were conducted to identify potential pathogenic variants of PCD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!