The Rrs1 protein plays an essential role in the biogenesis of 60S ribosomal subunits in budding yeast (Saccharomyces cerevisiae). Here, we examined whether the fission yeast (Schizosaccharomyces pombe) homologue of Rrs1 also plays a role in ribosome biogenesis. To this end, we constructed two temperature-sensitive fission yeast strains, rrs1-D14/22G and rrs1-L51P, which had amino acid substitutions corresponding to those of the previously characterized budding yeast rrs1-84 (D22/30G) and rrs1-124 (L61P) strains, respectively. The fission yeast mutants exhibited severe defects in growth and 60S ribosomal subunit biogenesis at high temperatures. In addition, expression of the Rrs1 protein of fission yeast suppressed the growth defects of the budding yeast rrs1 mutants at high temperatures. Yeast two-hybrid analyses revealed that the interactions of Rrs1 with the Rfp2 and Ebp2 proteins were conserved in budding and fission yeasts. These results suggest that the essential function of Rrs1 in ribosome biogenesis may be conserved in budding and fission yeasts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/yea.3083DOI Listing

Publication Analysis

Top Keywords

fission yeast
16
ribosome biogenesis
12
conserved budding
12
budding fission
12
fission yeasts
12
budding yeast
12
essential function
8
function rrs1
8
rrs1 ribosome
8
biogenesis conserved
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!