Carbene insertion into a P-H bond: parent phosphinidene-carbene adducts from PH3 and bis(phosphinidene)mercury complexes.

Dalton Trans

Laboratory of Inorganic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.

Published: April 2016

PH3 reacts with the in situ generated N-heterocyclic carbene DippNHC* (DippNHC* = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) to give the phosphanyl-imidazolidine [(Dipp)NHC*-H]-[PH2]. Upon treatment with an ortho-quinone, [(Dipp)NHC*-H]-[PH2] is dehydrogenated to give the parent phosphinidene-carbene adduct (Dipp)NHC*[double bond, length as m-dash]PH. Alternative routes to [(Dipp)NHC*-H]-[PH2] and (Dipp)NHC*[double bond, length as m-dash]PH employ NaPH2 and (TMS)3P7 (TMS = trimethylsilyl), respectively, as phosphorus sources. The adduct (Dipp)NHC*[double bond, length as m-dash]PH and the related adduct (Dipp)NHC[double bond, length as m-dash]PH ((Dipp)NHC = bis(2,6-diisopropylphenyl)imidazol-2-ylidene) possessing an unsaturated NHC backbone both react with HgCl2 to give the bis(carbene-phosphinidenyl) complexes [((Dipp)NHC*[double bond, length as m-dash]P)2Hg] and [((Dipp)NHC[double bond, length as m-dash]P)2Hg].

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5dt01741fDOI Listing

Publication Analysis

Top Keywords

bond length
24
length m-dash]ph
16
dippnhc*[double bond
12
parent phosphinidene-carbene
8
adduct dippnhc*[double
8
length m-dash]p2hg]
8
bond
7
length
6
carbene insertion
4
insertion p-h
4

Similar Publications

Background: Infertility was often considered a female issue, but male infertility emerged significantly after the Covid-19 pandemic. Hence, assessments are crucial for planning policies on health care and family planning and reasons thereof post vaccinations.

Material And Methods: The present study was a case-control, dual-centers, prospective study with normal sperm parameters.

View Article and Find Full Text PDF

HO Triggering Electron-Directed Transfer of Emerging Contaminants over Asymmetric Nano Zinc Oxide Surfaces for Water Self-Purification Expansion.

JACS Au

January 2025

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China.

Slow mass transfer processes between inert emerging contaminants (ECs) and dissolved oxygen (DO) limit natural water self-purification; thus, excessive energy consumption is necessary to achieve ECs removal, which has become a longstanding global challenge. Here, we propose an innovative water self-purification expansion strategy by constructing asymmetric surfaces that could modulate trace HO as trigger rather than oxidant to bridge a channel between inert ECs and natural dissolved oxygen, achieved through a dual-reaction-center (DRC) catalyst consisting of Cu/Co lattice-substituted ZnO nanorods (CCZO-NRs). During water purification, the bond lengths of emerging contaminants (ECs) adsorbed on the asymmetric surface were stretched, and this stretching was further enhanced by HO mediation, resulting in a significant reduction of bond-breaking energy barriers.

View Article and Find Full Text PDF

The process of proton translocation in , triggered by light, is powered by the photoisomerization of all--retinal in bacteriorhodopsin (bR). The primary events in bR involving rapid structural changes upon light absorption occur within subpicoseconds to picoseconds. While the three-state model has received extensive support in describing the primary events between the H and K states, precise characterization of each excited state in the three-state model during photoisomerization remains elusive.

View Article and Find Full Text PDF

The quest for color-pure emitters for multicolor bioimaging as well as for ultrahigh definition organic light-emitting diodes demands facile design concepts to avoid tedious synthetic or computational trial-and-error procedures. We have recently presented a simple recipe to construct color-pure blue emitters, which combines basic resonance structure and frontier molecular orbital treatments; this recipe applies to multiresonant type emitters and allows to enlarge the chemical space toward novel structural motifs. In the current work, we show that such fundamental considerations further apply to the structurally entirely different family of xanthene dyes.

View Article and Find Full Text PDF

Molecular dynamics simulations of the structure and dynamics in mixtures of ionic liquids and alcohols.

Phys Chem Chem Phys

January 2025

Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75168, Iran.

Molecular dynamics simulations were conducted on mixtures of ionic liquids (ILs) and alcohols, specifically methanol, ethanol, and 1-propanol. Two different ILs, [Mmim][MeSO] and [Bmim][MeSO], were used with varying alcohol mole fractions to investigate the impact of alkyl chain length of cations, alcohol types, and alcohol concentrations on different structural and dynamic properties. Unique characteristics of the ILs were observed due to the varying polarity of solvents and the creation of diverse local environments surrounding the ILs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!