Background: Renal ischemia-reperfusion (I/R) injury plays an important role in the acute kidney injury. The pathogenetic mechanisms potential I/R injury is involved in apoptosis and inflammation. Epigallocatechin gallate (EGCG), a major constituent of green tea, has been shown to have anti-inflammatory and anti-apoptotic activities. This study aimed to explore the underlying effects and mechanisms of EGCG on renal I/R injury in a rat model.
Materials And Methods: We induced renal I/R injury in SD rats by clamping the left renal artery for 45 min followed by 24-h reperfusion, along with a contralateral nephrectomy. We randomly allocated 30 rats to three groups (n = 10): sham group, IRI group, and EGCG group. We preconditioned rats intraperitoneally with EGCG (50 mg/kg) or vehicle (50 mg/kg) 45 min before inducing renal ischemia. We collected serum and kidneys at 24 h after reperfusion. Renal function and histologic damage were assessed. We also determined markers of inflammation and apoptosis in kidneys or serum.
Results: EGCG pretreatment can significantly reduce renal dysfunction, histologic change and the expression of tumor necrosis factor-α, IL-1β, IL-6, Bax and cleavage caspase 3 induced by I/R injury and increase the expression of Bax and caspase 3. Moreover, EGCG pretreatment can further induce the activation of p38 mitogen-activated protein kinase in kidney, with no influence on the expression of p38.
Conclusions: EGCG treatment can decrease renal ischemia-reperfusion injury by suppressing inflammation and cell apoptosis. Thus, EGCG may represent a potential strategy to reduce renal I/R injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4518080 | PMC |
http://dx.doi.org/10.1007/s11255-015-1030-0 | DOI Listing |
N Engl J Med
January 2025
From the Department of Medicine, University of Auckland, Auckland, New Zealand (M.J.B., Z.N., A.M., C.G., V.P., B.M., A.G., I.R.R., G.G., A.H.); the Department of Psychology, Stanford University, Stanford, CA (C.G.); and the Department of Radiology, Starship Hospital, Auckland, New Zealand (S.B.).
Background: Zoledronate prevents fractures in older women when administered every 12 to 18 months, but its effects on bone density and bone turnover persist beyond 5 years. Whether infrequent zoledronate administration would prevent vertebral fractures in early postmenopausal women is unknown.
Methods: We conducted a 10-year, prospective, double-blind, randomized, placebo-controlled trial involving early postmenopausal women (50 to 60 years of age) with bone mineral density T scores lower than 0 and higher than -2.
FASEB J
January 2025
Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China.
Podocytes are essential to maintain the normal filtration function of glomerular basement membrane, which could be injured by ischemia-reperfusion. As complicated function of autophagy in terminal differentiated podocytes, autophagy dysfunction might contribute to I/R induced renal dysfunction following glomerular filtration membrane (GFM) injuries. Meanwhile, apelin-13, an endogenous polypeptide, has been proved to be effective in regulating autophagy and apoptosis in podocytes.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey.
Ovarian ischemia is a pathological condition that usually occurs due to ovarian torsion, resulting in the interruption of blood supply to the ovaries and oxygen deficiency. Silymarin (SLM) is a flavonoid complex of plant origin with pharmacological properties such as antioxidant, anti-inflammatory, and antiapoptotic effects. In this study, we investigated the effects of SLM through different pathways in rats subjected to experimental ovarian ischemia/reperfusion (I/R).
View Article and Find Full Text PDFCurr Vasc Pharmacol
January 2025
Department of Pharmacy, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
Neutrophil elastase (NE), a major protease in neutrophils, is important in promoting inflammation and multiple pathological processes. While NE is released abundantly in ischemiareperfusion (I/R) injury, the intricate relationship between NE and I/R injury remains unclear. We examine several aspects of how NE is involved in I/R injury.
View Article and Find Full Text PDFHepatic ischemia-reperfusion injury (IRI) poses a significant threat to clinical outcomes and graft survival during hemorrhagic shock, hepatic resection, and liver transplantation. Current pharmacological interventions for hepatic IRI are inadequate. In this study, we identified ginsenoside Rk2 (Rk2), a rare dehydroprotopanaxadiol saponin, as a promising agent against hepatic IRI through high-throughput screening.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!