High-temperature stress can disrupt cellular proteostasis, resulting in the accumulation of insoluble protein aggregates. For survival under stressful conditions, it is important for cells to maintain a pool of native soluble proteins by preventing and/or dissociating these aggregates. Chaperones such as GroEL/GroES (Hsp60/Hsp10) and DnaK/DnaJ/GrpE (Hsp70/Hsp40/nucleotide exchange factor) help cells minimize protein aggregation. Protein disaggregation is accomplished by chaperones belonging to the Caseinolytic Protease (Clp) family of proteins. ClpB/Hsp100 proteins are strikingly ubiquitous and are found in bacteria, yeast and multi-cellular plants. The expression of these proteins is regulated by heat stress (HS) and developmental cues. Bacteria and yeast contain one and two forms of ClpB proteins, respectively. Plants possess multiple forms of these proteins that are localized to different cellular compartments (i.e. cytoplasm/nucleus, chloroplast or mitochondria). Overwhelming evidence suggests that ClpB/Hsp100 proteins play decisive roles in cell adaptation to HS. Mutant bacteria and yeast cells lacking active ClpB/Hsp100 proteins are critically sensitive to high-temperature stress. Likewise, Arabidopsis, maize and rice mutants lacking cytoplasmic ClpB proteins are very sensitive to heat. In this study, we present the structural and functional attributes of plant ClpB forms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/07388551.2015.1051942 | DOI Listing |
PLoS One
December 2021
Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia.
Heat shock proteins (Hsps) are stress-responsive molecular chaperones, which uphold proper protein folding in response to external and internal stresses. The Hsp100 gene family plays a substantial role in thermos-tolerance of plants. This study investigated evolutionary relationship and expression of ClpB/Hsp100 gene family in tomato under heat stress.
View Article and Find Full Text PDFFront Plant Sci
July 2016
ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India; ICAR-National Bureau of Plant Genetic ResourcesNew Delhi, India.
A sub-group of class I Caseinolytic proteases (Clps) function as molecular chaperone and confer thermotolerance to plants. We identified class I Clp family consisting of five ClpB/HSP100, two ClpC, and two ClpD genes from bread wheat. Phylogenetic analysis showed that these genes were highly conserved across grass genomes.
View Article and Find Full Text PDFSaudi J Biol Sci
March 2016
Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India.
Heat stress adversely affects the growth and yield of faba bean crop. Accumulation of ClpB/Hsp100 class of proteins is a critical parameter in induction of acquired heat stress tolerance in plants. Heat-induced expression of ClpB/Hsp100 genes has been noted in diverse plant species.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2015
Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8; Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8; Department of Chemistry, University of Toronto, Toronto, ON, Canada M5S 1A8; Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8;
ClpB/Hsp100 is an ATP-dependent disaggregase that solubilizes and reactivates protein aggregates in cooperation with the DnaK/Hsp70 chaperone system. The ClpB-substrate interaction is mediated by conserved tyrosine residues located in flexible loops in nucleotide-binding domain-1 that extend into the ClpB central pore. In addition to the tyrosines, the ClpB N-terminal domain (NTD) was suggested to provide a second substrate-binding site; however, the manner in which the NTD recognizes and binds substrate proteins has remained elusive.
View Article and Find Full Text PDFCrit Rev Biotechnol
October 2016
a Department of Plant Molecular Biology , University of Delhi South Campus, New Delhi , India.
High-temperature stress can disrupt cellular proteostasis, resulting in the accumulation of insoluble protein aggregates. For survival under stressful conditions, it is important for cells to maintain a pool of native soluble proteins by preventing and/or dissociating these aggregates. Chaperones such as GroEL/GroES (Hsp60/Hsp10) and DnaK/DnaJ/GrpE (Hsp70/Hsp40/nucleotide exchange factor) help cells minimize protein aggregation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!