MicroRNAs (miRNAs) in the control of HF development and cycling: the next frontiers in hair research.

Exp Dermatol

Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK.

Published: November 2015

Hair follicle development and its postnatal regeneration are characterized by dramatic changes in its microanatomy and cellular activity, which are controlled by multiple signalling pathways, transcription factors and epigenetic regulators, including microRNAs (miRNAs). miRNAs and their targets form remarkably diverse regulatory networks, playing a key role in the execution of gene expression programmes in the different cell lineages of the hair follicle. This review summarizes the roles of miRNAs in the control of hair follicle development, cycling and hair pigmentation, emphasizes the remaining problems/unanswered questions, and provides future directions in this rapidly growing and exciting area of research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5721351PMC
http://dx.doi.org/10.1111/exd.12785DOI Listing

Publication Analysis

Top Keywords

hair follicle
12
micrornas mirnas
8
mirnas control
8
development cycling
8
follicle development
8
hair
5
control development
4
cycling frontiers
4
frontiers hair
4
hair hair
4

Similar Publications

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

High-frequency ultrasound (HFUS) has been reported to be useful for the diagnosis of cutaneous diseases; however, its two-dimensional nature limits the value both in quantitative and qualitative evaluation. Three-dimensional (3D) visualization might help overcome the weakness of the currently existing HFUS. 3D-HFUS was newly developed and applied to various skin tumors and inflammatory hair diseases to assess its validity and advantages for dermatological use.

View Article and Find Full Text PDF

Moracin M promotes hair regeneration through activation of the WNT/β-catenin pathway and angiogenesis.

Arch Dermatol Res

January 2025

Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, 54538, South Korea.

Hair follicle growth depends on the intricate interaction of cells within the follicle and its vascular supply. Current FDA-approved treatments like minoxidil have limitations, including side effects and the need for continuous use. Moracin M, a compound from Moraceae family, was investigated for its effects on hair growth and vascular regeneration.

View Article and Find Full Text PDF

Trichogerminoma (TG) is a rare adnexal tumor with hair follicle differentiation with less than 50 cases reported in the literature. In 2022, by investigating the genetic profile of 21 cases, our group identified recurrent rearrangements of the GRHL1/2/3 genes in this tumor entity, suggesting such alteration as the main oncogenic driver in TG. Up to now, only one TG case of malignant transformation has been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!