Rapid Glucocorticoid Feedback Inhibition of ACTH Secretion Involves Ligand-Dependent Membrane Association of Glucocorticoid Receptors.

Endocrinology

Sections on Endocrine Physiology (Q.D., D.R., L.T., G.A.) and Cellular Signaling (M.T., S.S.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; College of Animal Sciences (Q.D.), Jilin University, Chang Chun 130021, China; and Department of Molecular and Integrative Physiology (M.J.L.), University of Michigan Medical School, Ann Arbor, Michigan 48109.

Published: September 2015

The hypothesis that rapid glucocorticoid inhibition of pituitary ACTH secretion mediates a feedforward/feedback mechanism responsible for the hourly glucocorticoid pulsatility was tested in cultured pituitary cells. Perifusion with 30 pM CRH caused sustained the elevation of ACTH secretion. Superimposed corticosterone pulses inhibited CRH-stimulated ACTH release, depending on prior glucocorticoid clearance. When CRH perifusion started after 2 hours of glucocorticoid-free medium, corticosterone levels in the stress range (1 μM) caused a delayed (25 min) and prolonged inhibition of CRH-stimulated ACTH secretion, up to 60 minutes after corticosterone withdrawal. In contrast, after 6 hours of glucocorticoid-free medium, basal corticosterone levels inhibited CRH-stimulated ACTH within 5 minutes, after rapid recovery 5 minutes after corticosterone withdrawal. The latter effect was insensitive to actinomycin D but was prevented by the glucocorticoid receptor antagonist, RU486, suggesting nongenomic effects of the classical glucocorticoid receptor. In hypothalamic-derived 4B cells, 10 nM corticosterone increased immunoreactive glucocorticoid receptor content in membrane fractions, with association and clearance rates paralleling the effects on ACTH secretion from corticotrophs. Corticosterone did not affect CRH-stimulated calcium influx, but in AtT-20 cells, it had biphasic effects on CRH-stimulated Src phosphorylation, with early inhibition and late stimulation, suggesting a role for Src phosphorylation on the rapid glucocorticoid feedback. The data suggest that the nongenomic/membrane effects of classical GR mediate rapid and reversible glucocorticoid feedback inhibition at the pituitary corticotrophs downstream of calcium influx. The sensitivity and kinetics of these effects is consistent with the hypothesis that pituitary glucocorticoid feedback is part of the mechanism for adrenocortical ultradian pulse generation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541620PMC
http://dx.doi.org/10.1210/EN.2015-1265DOI Listing

Publication Analysis

Top Keywords

acth secretion
20
glucocorticoid feedback
16
rapid glucocorticoid
12
crh-stimulated acth
12
glucocorticoid receptor
12
glucocorticoid
10
feedback inhibition
8
inhibition pituitary
8
inhibited crh-stimulated
8
hours glucocorticoid-free
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!