GLP-1 Receptor Mediated Targeting of a Fluorescent Zn(2+) Sensor to Beta Cell Surface for Imaging Insulin/Zn(2+) Release.

Bioconjug Chem

†Departments of Cell Biology and of Biochemistry, ‡Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9039, United States.

Published: August 2015

The pancreatic islet beta cell plays an essential role in maintaining the normal blood glucose level by releasing insulin. Loss of functional beta cell mass leads to diabetes—a disease affecting ∼9% of the population worldwide. There has been great interest and intense effort in developing imaging probes for monitoring islet beta cells, and glucagon-like peptide-1 receptor (GLP-1R) has emerged as a valuable biomarker for targeting beta cells. However, efforts thus far in GLP-1R mediated beta cell labeling and imaging has largely, if not exclusively, focused on developing imaging probes for monitoring beta cell mass, and few studies have investigated imaging beta cell function (insulin release) through GLP-1R. We now report the design and synthesis of a bioconjugate, ZIMIR-Ex4(9-39), that consists of a fluorescent Zn(2+) sensor and a truncated exendin 4 peptide for imaging insulin/Zn(2+) release in islet beta cells. In vitro, the conjugate bound to Zn(2+) with high affinity and displayed a robust fluorescence enhancement upon Zn(2+) chelation. When added to beta cells at submicromolar concentration, ZIMIR-Ex4(9-39) rapidly labeled cell surface in minutes to report the dynamics of insulin/Zn(2+) release with high spatiotemporal resolution. Future explorations of this approach may lead to probes for tracking beta cell function using different imaging modalities.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.bioconjchem.5b00332DOI Listing

Publication Analysis

Top Keywords

beta cell
28
beta cells
16
insulin/zn2+ release
12
islet beta
12
beta
11
fluorescent zn2+
8
zn2+ sensor
8
cell
8
cell surface
8
imaging insulin/zn2+
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!