Mutational dynamics between primary and relapse neuroblastomas.

Nat Genet

1] Pediatric Oncology and Hematology, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany. [2] Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany. [3] German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.

Published: August 2015

Neuroblastoma is a malignancy of the developing sympathetic nervous system that is often lethal when relapse occurs. We here used whole-exome sequencing, mRNA expression profiling, array CGH and DNA methylation analysis to characterize 16 paired samples at diagnosis and relapse from individuals with neuroblastoma. The mutational burden significantly increased in relapsing tumors, accompanied by altered mutational signatures and reduced subclonal heterogeneity. Global allele frequencies at relapse indicated clonal mutation selection during disease progression. Promoter methylation patterns were consistent over disease course and were patient specific. Recurrent alterations at relapse included mutations in the putative CHD5 neuroblastoma tumor suppressor, chromosome 9p losses, DOCK8 mutations, inactivating mutations in PTPN14 and a relapse-specific activity pattern for the PTPN14 target YAP. Recurrent new mutations in HRAS, KRAS and genes mediating cell-cell interaction in 13 of 16 relapse tumors indicate disturbances in signaling pathways mediating mesenchymal transition. Our data shed light on genetic alteration frequency, identity and evolution in neuroblastoma.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3349DOI Listing

Publication Analysis

Top Keywords

relapse
6
mutational dynamics
4
dynamics primary
4
primary relapse
4
relapse neuroblastomas
4
neuroblastoma
4
neuroblastomas neuroblastoma
4
neuroblastoma malignancy
4
malignancy developing
4
developing sympathetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!