Exonuclease III-based target recycling for ultrasensitive homogeneous monitoring of HIV DNA using Ag(+)-coordinated hairpin probe.

Biosens Bioelectron

Laboratory of the Clinical Experimental Base of Biosensor and Microarray, Center of Molecule and Gene Diagnosis, Southwest Hospital, Third Military Medical University, Chongqing 400042, PR China.

Published: December 2015

A new homogeneous electrochemical sensing strategy based on exonuclease III-assisted target recycling amplification was utilized for simple, rapid and highly sensitive detection of human immunodeficiency virus (HIV) DNA on an immobilization-free Ag(I)-assisted hairpin DNA through the cytosine-Ag(+)-cytosine coordination chemistry. The assay involved target-induced strand-displacement reaction accompanying dissociation of the chelated Ag(+) in the hairpins and exonuclease III-triggered target recycling. Initially, the added target DNA hybridized with hairpin DNA to disrupt the Ag(I)-coordinated hairpin probe and releases the coordinated Ag(+) ion. Then, the newly formed DNA double-stranded DNA could be cleaved by exonuclease III, and released target HIV DNA, which retriggered the strand-displacement reaction with the hairpin for target recycling, thereby resulting in formation of numerous free Ag(+) ions in the detection cell. The released Ag(+) ions can be readily captured by the negatively charged electrode, and subsequent anodic-stripping voltammetric detection of the captured Ag(+) ions are conducted to form the anodic current for the production of the electronic signal within the applied potential. Under optimal conditions, the exonuclease III-based sensing system exhibited good electrochemical responses for the detection of HIV DNA at a concentration as low as 23 fM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2015.06.024DOI Listing

Publication Analysis

Top Keywords

target recycling
16
hiv dna
16
ag+ ions
12
dna
9
exonuclease iii-based
8
hairpin probe
8
hairpin dna
8
strand-displacement reaction
8
target
6
exonuclease
5

Similar Publications

Background: Alzheimer's disease (AD) is the leading cause of dementia worldwide. The recent announcement that lecanemab, a monoclonal antibody targeting amyloid-b, can slow down cognitive decline in AD is a great step forward in the battle against the disease. However, the modest success achieved in the clinical trial speak to the need for developing additional pharmaceutical approaches to target other key features of AD.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Retromer Therapeutics, New York, NY, USA.

Genetic, cell biology and autopsied brain tissue studies indicate that deficits in the SORL1-retromer complex play a critical role in the pathogenesis of Alzheimer's disease (AD). SORL1 is an endosomal receptor that interacts with the retromer heterotrimer core complex consisting of VPS26-VPS35-VPS29. Together, SORL1-retromer regulate endosomal recycling of several AD-related cargos such as amyloid precursor protein.

View Article and Find Full Text PDF

Biofluidic biomarkers concord with postmortem molecular studies, suggesting that the endosomal recycling pathway regulated by SORL1's interaction with the retromer protein VPS2b is commonly disrupted in late-onset, 'sporadic', Alzheimer's disease (AD). Here, a program for developing a neuroimaging-based biomarker will be reviewed. The program is anchored by findings in support of the conclusion that, because of its distinct network properties, the trans-entorhinal cortex is heavily dependent on the recycling pathway.

View Article and Find Full Text PDF

Biochemical and biophysical mechanisms macrophages use to tune phagocytic appetite.

J Cell Sci

January 2025

Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA.

Macrophages phagocytose, or eat, pathogens, dead cells and cancer cells. To activate phagocytosis, macrophages recognize 'eat me' signals like IgG and phosphatidylserine on the target cell surface. Macrophages must carefully adjust their phagocytic appetite to ignore non-specific or transient eat me signal exposure on healthy cells while still rapidly recognizing pathogens and debris.

View Article and Find Full Text PDF

This study introduces a novel method for functionalizing natural asphalt, presenting new opportunities for upgrading asphaltenes from road to a catalyst. The process utilizes a metal-free sonobromination technique in acetic acid to incorporate carbon-halogen substituents onto natural asphalt. These sites are then targeted by nucleophilic substitution with diethanolamine, followed by complexation with Pd(0) to create a unique palladium complex grafted onto natural asphalt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!