Anaphylaxis is a potentially fatal, immediate hypersensitivity reaction. Mast cells and basophils, by elaborating vasoactive mediators and cytokines, are the main primary effector cells of anaphylaxis. Mast cells have been identified in human heart between myocardial fibers, perivascularly, in the adventitia, and in the arterial intima. Mast cells isolated from human heart tissue (HHMC) of patients undergoing cardiac transplantation express high affinity immunglobulin E (IgE) receptors (FcεRI), C3a, C5a, and kit receptors (KIT). Anti-IgE, anti-FcεRI, and immunoglobulin superallergens induce in vitro secretion of preformed mediators (histamine, tryptase, chymase, and renin) and the de novo synthesis of cysteinyl leukotriene C4 (LTC4) and prostaglandin D2 (PGD2) from HHMC. Complement is activated and anaphylatoxin forms during anaphylaxis. C5a and C3a cause the in vitro release of histamine and tryptase from HHMC. Therapeutic (general anesthetics, protamine, etc.) and diagnostic agents (radio contrast media, etc.), which can cause anaphylactoid reactions, activate HHMC in vitro. Low concentrations of histamine and cysteinyl leukotrienes given to subjects undergoing diagnostic catheterisation caused significant systemic and coronary hemodynamic effects. These data indicate that human heart mast cells and their mediators play a role in severe anaphylactic reactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479518 | PMC |
http://dx.doi.org/10.1007/s40629-014-0007-3 | DOI Listing |
Front Physiol
December 2024
The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States.
Insight into human physiology is key to maintaining diver safety in underwater operational environments. Numerous hazardous physiological phenomena can occur during the descent, the time at depth, the ascent, and the hours after a dive that can have enduring consequences. While safety measures and strict adherence to dive protocols make these events uncommon, diving disorders still occur, often with insufficient understanding of the factors that triggered the event.
View Article and Find Full Text PDFTheranostics
January 2025
Department of neurology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea.
It remains unclear why unilateral proximal carotid artery occlusion (UCAO) causes benign oligemia in mice, yet leads to various outcomes (asymptomatic-to-death) in humans. We hypothesized that inhibition of nitric oxide synthase (NOS) both transforms UCAO-mediated oligemia into full infarction and expands pre-existing infarction. Using 900 mice, we i) investigated stroke-related effects of UCAO with/without intraperitoneal administration of the NOS inhibitor (NOSi) N-nitro-L-arginine methyl ester (L-NAME, 400 mg/kg); ii) examined the rescue effect of the NO-donor, molsidomine (200 mg/kg at 30 minutes); and iii) tested the impact of antiplatelet medications.
View Article and Find Full Text PDFFront Immunol
January 2025
Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.
Introduction: The COVID-19 pandemic had a widespread global impact and presented numerous challenges. The emergence of SARS-CoV-2 variants has changed transmission rates and immune evasion, possibly impacting the severity. This study aims to investigate the impact of variants on clinical outcomes in southern Brazil.
View Article and Find Full Text PDFHypertrophic cardiomyopathy (HCM) is a genetic cardiac disorder associated with an increased risk of arrhythmias, heart failure, and sudden cardiac death. Current imaging and clinical markers are not fully sufficient in accurate diagnosis and patient risk stratification. Although known cardiac biomarkers in blood are used, they lack specificity for HCM and primarily stratify for death due to heart failure in overt cases.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Division of Science Education, Kangwon National University, 24341, Republic of Korea.
Intricate crosstalk among various lung cell types is crucial for orchestrating diverse physiological processes. Traditional two-dimensional and recent three-dimensional (3D) assay platforms fail to precisely replicate these complex communications. Many lung models do not effectively reflect the multicellular complexity of lung tissue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!