Understanding epigenetic mechanisms regulating embryonic stem cell (ESC) differentiation to endothelial cells may lead to increased efficiency of generation of vessel wall endothelial cells needed for vascular engineering. Here we demonstrated that the histone demethylases KDM4A and KDM4C played an indispensable but independent role in mediating the expression of fetal liver kinase (Flk)1 and VE-cadherin, respectively, and thereby the transition of mouse ESCs (mESCs) to endothelial cells. KDM4A was shown to bind to histones associated with the Flk1 promoter and KDM4C to bind to histones associated with the VE-cadherin promoter. KDM4A and KDM4C were also both required for capillary tube formation and vasculogenesis in mice. We observed in zebrafish that KDM4A depletion induced more severe vasculogenesis defects than KDM4C depletion, reflecting the early involvement of KDM4A in specifying endothelial cell fate. These findings together demonstrate the essential role of KDM4A and KDM4C in orchestrating mESC differentiation to endothelial cells through the activation of Flk1 and VE-cadherin promoters, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618442 | PMC |
http://dx.doi.org/10.1016/j.stemcr.2015.05.016 | DOI Listing |
J Clin Invest
January 2025
Department of Laboratory Medicine, Division of Translational Cancer Researc, Lund University Cancer Centre, Lund University, Lund, Sweden.
The biology centered around the TGF-beta type I receptor Activin Receptor-Like Kinase (ALK)1 (encoded by ACVRL1) has been almost exclusively based on its reported endothelial expression pattern since its first functional characterization more than two decades ago. Here, in efforts to better define the therapeutic context in which to use ALK1 inhibitors, we uncover a population of tumor-associated macrophages (TAMs) that, by virtue of their unanticipated Acvrl1 expression, are effector targets for adjuvant anti-angiogenic immunotherapy in mouse models of metastatic breast cancer. The combinatorial benefit depended on ALK1-mediated modulation of the differentiation potential of bone marrow-derived granulocyte-macrophage progenitors, the release of CD14+ monocytes into circulation, and their eventual extravasation.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Emergency and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, People's Republic of China.
Narciclasine (Ncs) was effective in sepsis management due to its antioxidant properties. The present study dissected the protective effects of Ncs against sepsis-associated acute kidney injury (SA-AKI) and the molecular mechanisms. The SA-AKI mice were developed using cecum ligation and puncture and pretreated with Ncs and adenoviruses.
View Article and Find Full Text PDFCell Tissue Res
January 2025
Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan.
Adult tissue stem cells of the anterior pituitary gland, CD9/SOX2-positive cells, are believed to exist in the marginal cell layer (MCL) bordering the residual lumen of the Rathke's pouch. These cells migrate from the intermediate lobe side of the MCL (IL-MCL) to the anterior lobe side of the MCL and may be involved in supplying hormone-producing cells. Previous studies reported that some SOX2-positive cells of the anterior lobe differentiate into skeletal muscle cells.
View Article and Find Full Text PDFClin Microbiol Rev
January 2025
Laboratory of Pathology of Implant Infections, Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
SUMMARY is a major human pathogen. It can cause many types of infections, in particular bacteremia, which frequently leads to infective endocarditis, osteomyelitis, sepsis, and other debilitating diseases. The development of secondary infections is based on the bacterium's ability to associate with endothelial cells lining blood vessels.
View Article and Find Full Text PDFCardiol Rev
January 2025
From the Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX.
The vascular endothelium and its endothelial glycocalyx contribute to the protection of the endothelial cells from exposure to high levels of sodium and help these structures maintain normal function by regulating vascular permeability due to its buffering effect. The endothelial glycocalyx has negative surface charges that bind sodium and limit sodium entry into cells and the interstitial space. High sodium levels can disrupt this barrier and allow the movement of sodium into cells and extravascular fluid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!