We tested whether DNA-methylation profiles account for inter-individual variation in body mass index (BMI) and height and whether they predict these phenotypes over and above genetic factors. Genetic predictors were derived from published summary results from the largest genome-wide association studies on BMI (n ∼ 350,000) and height (n ∼ 250,000) to date. We derived methylation predictors by estimating probe-trait effects in discovery samples and tested them in external samples. Methylation profiles associated with BMI in older individuals from the Lothian Birth Cohorts (LBCs, n = 1,366) explained 4.9% of the variation in BMI in Dutch adults from the LifeLines DEEP study (n = 750) but did not account for any BMI variation in adolescents from the Brisbane Systems Genetic Study (BSGS, n = 403). Methylation profiles based on the Dutch sample explained 4.9% and 3.6% of the variation in BMI in the LBCs and BSGS, respectively. Methylation profiles predicted BMI independently of genetic profiles in an additive manner: 7%, 8%, and 14% of variance of BMI in the LBCs were explained by the methylation predictor, the genetic predictor, and a model containing both, respectively. The corresponding percentages for LifeLines DEEP were 5%, 9%, and 13%, respectively, suggesting that the methylation profiles represent environmental effects. The differential effects of the BMI methylation profiles by age support previous observations of age modulation of genetic contributions. In contrast, methylation profiles accounted for almost no variation in height, consistent with a mainly genetic contribution to inter-individual variation. The BMI results suggest that combining genetic and epigenetic information might have greater utility for complex-trait prediction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4572498 | PMC |
http://dx.doi.org/10.1016/j.ajhg.2015.05.014 | DOI Listing |
BMC Plant Biol
January 2025
State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China.
Background: RNA m6A methylation installed by RNA methyltransferases plays a crucial role in regulating plant growth and development and environmental stress responses. However, the underlying molecular mechanisms of m6A methylation involved in seed germination and stress responses are largely unknown. In the present study, we surveyed global m6A methylation in rice seed germination under salt stress and the control (no stress) using an osmta1 mutant and its wild type.
View Article and Find Full Text PDFNeuropharmacology
January 2025
School of Pharmacy and Biomedical Sciences, The University of Central Lancashire, Preston UK. Electronic address:
Personality disorders (PDs) are psychiatric conditions characterized by enduring patterns of cognition, emotion, and behaviour that deviate significantly from cultural norms, causing distress or impairment. The aetiology of PDs is complex, involving both genetic and environmental factors. Genetic studies estimate the heritability of PDs at 30% to 60%, implicating genes involved in neurotransmitter regulation, such as those for serotonin transporters and dopamine receptors.
View Article and Find Full Text PDFJ Adv Res
January 2025
Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016 Zhejiang, China; Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016 Zhejiang, China. Electronic address:
Introduction: Tumor suppressor gene (TSG) inactivation by epigenetic modifications contributes to the carcinogenesis and progression of colorectal cancer (CRC). Expression profiling and CpG methylomics revealed that a forkhead-box transcriptional factor, FOXS1, is downregulated and methylated in CRC.
Objectives: To assess the biological functions and underlying mechanisms of FOXS1 in colorectal cancer.
J Chromatogr A
January 2025
Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte 28660, España. Electronic address:
Mammalian hibernation offers a unique model for exploring neuroprotective mechanisms relevant to neurodegenerative diseases. In this study, we employed untargeted lipidomics with iterative tandem mass spectrometry (MS/MS) to profile the brain lipidome of Syrian hamsters across different hibernation stages: late torpor, arousal, and euthermia (control). Previously, a lipid species identified as methyl-PA(16:0/0:0) showed a significant increase during torpor, but its precise structure was unresolved due to technological constraints.
View Article and Find Full Text PDFSemin Cancer Biol
January 2025
Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by late detection and poor prognosis. Recent research highlights the pivotal role of epigenetic alter- ations in driving PDAC development and progression. These changes, in conjunction with genetic mutations, contribute to the intricate molecular landscape of the disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!