Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
ATP analogues have been powerful compounds for the study of kinase-catalyzed phosphorylation. However, the cell impermeability of ATP analogues has largely limited their use to in vitro lysate-based experiments. Herein, we report the first cell-permeable ATP analogue, ATP-polyamine-biotin (APB). APB is shown to promote biotin labeling of kinase substrates in live cells and has future applications in phosphoprotein purification and analysis. More generally, these studies provide a foundation for the development of additional cell-permeable ATP analogues for cell-signaling research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4551444 | PMC |
http://dx.doi.org/10.1002/anie.201503041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!