Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is a crucial coregulator interacting with multiple transcriptional factors in the regulation of cardiac hypertrophy. The present study revealed that PGC-1α protected cardiomyocytes from hypertrophy by suppressing calcineurin-nuclear factor of activated T cells c4 (NFATc4) signaling pathway. Overexpression of PGC-1α by adenovirus infection prevented the increased protein and messenger RNA expression of NFATc4 in phenylephrine (PE)-treated hypertrophic cardiomyocytes, whereas knockdown of PGC-1α by RNA silencing augmented the expression of NFATc4. An interaction between PGC-1α and NFATc4 was observed in both the cytoplasm and nucleus of neonatal rat cardiomyocytes. Adenovirus PGC-1α prevented the nuclear import of NFATc4 and increased its phosphorylation level of NFATc4, probably through repressing the expression and activity of calcineurin and interfering with the interaction between calcineurin and NFATc4. On the contrary, PGC-1α silencing aggravated PE-induced calcineurin activation, NFATc4 dephosphorylation, and nuclear translocation. Moreover, the binding activity and transcription activity of NFATc4 to DNA promoter of brain natriuretic peptide were abrogated by PGC-1α overexpression but were enhanced by PGC-1α knockdown. The effect of PGC-1α on suppressing the calcinuerin-NFATc4 signaling pathway might at least partially contribute to the protective effect of PGC-1α on cardiomyocyte hypertrophy. These findings provide novel insights into the role of PGC-1α in regulation of cardiac hypertrophy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.trsl.2015.06.003 | DOI Listing |
J Orthop Surg Res
January 2025
Department of Knee Surgery, The First Hospital of Hebei Medical University, Hebei, China.
Objective: This study aims to explore the potential role of mesenchymal stem cells (MSCs) in the treatment of osteoarthritis (OA), particularly the function of the NOTCH1 signaling pathway in maintaining the stemness of MSCs and in chondrocyte differentiation.
Methods: Utilizing diverse analytical techniques on an osteoarthritis dataset, we unveil distinct gene expression patterns and regulatory relationships, shedding light on potential mechanisms underlying the disease. Techniques used include the culture of MSCs, induction of differentiation into chondrocytes, establishment of stable cell lines, Western Blot, and immunofluorescence.
Eur J Med Res
January 2025
Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
Objectives: SOX10 is crucially implicated in various cancer, yet the regulatory role in pancreatic cancer (PC) remains enigmatic. Underlying molecular mechanisms of SOX10 in PC were explored in our study.
Methods: Relationships between SOX10 and immune landscape were estimated using bioinformatic approaches.
Cancer Cell Int
January 2025
Department of Otolaryngology, Pudong Gongli Hospital, Shanghai, 200135, China.
Background: Specific molecular mechanisms by which AURKA promoted LSCC metastasis were still unknown.
Methods: Bioinformatic analysis was performed the relationship between TRIM28 and LSCC. Immunohistochemistry, Co-IP assay, Rt-PCR and Western Blot were used to examine the expression of related molecular.
Mol Med
January 2025
Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, ShengJing Hospital of China Medical University, SanHao Street No. 36, HePing District, Shenyang, 110000, Liaoning, China.
The lack of knowledge about the mechanism of hyperoxia-induced intestinal injury has attracted considerable attention, due to the potential for this condition to cause neonatal complications. This study aimed to explore the relationship between hyperoxia-induced oxidative damage and ferroptosis in intestinal tissue and investigate the mechanism by which hyperoxia regulates inflammation through ferroptosis. The study systematically evaluated the effects of hyperoxia on oxidative stress, mitochondrial damage, ferroptosis, and inflammation of intestinal epithelial cells both in vitro and in vivo.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
Department of Orthopaedics, Peking University Third Hospital, Peking University, No.49 NorthGarden Road, Haidian District, Beijing, 100191, Beijing, China.
Background: Epigenetic modifications have been proved to play important roles in the spinal degenerative diseases. As a type of noncoding RNA, the microRNA (miRNA) is a vital class of regulatory factor in the epigenetic modifications, while the role of miRNAs in the regulation of epigenetic modifications in ligamentum flavum hypertrophy (LFH) has not been fully investigated.
Methods: The miRNA sequencing analysis was used to explore the change of miRNA expression during the fibrosis of ligamentum flavum (LF) cells caused by the TGF-β1 (10 ng/ml).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!