Quantifying epitope presentation using mass spectrometry.

Mol Immunol

Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia; The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia. Electronic address:

Published: December 2015

Understanding the absolute quantities of MHC-bound epitopes (pMHC) presented on the surface of cells has long been a critical missing element in our knowledge of antigen presentation to T cells. Until recently, attaining such information has been restricted to the use of pMHC complex-specific monoclonal antibodies or T cell assays probing fractionated peptides eluted from cells. Although successful in a variety of cases, such approaches are limited in their scope and feasibility due to the nature of the reagents they are reliant upon. Here we report on the advancement of targeted mass spectrometry techniques to provide simultaneous and direct measurements of the relative and absolute levels of pMHC molecules and its potential for impact upon the field of antigen processing and presentation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molimm.2015.06.010DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
8
quantifying epitope
4
epitope presentation
4
presentation mass
4
spectrometry understanding
4
understanding absolute
4
absolute quantities
4
quantities mhc-bound
4
mhc-bound epitopes
4
epitopes pmhc
4

Similar Publications

Introduction/objectives: Sjogren's syndrome (SS) is a chronic inflammatory and difficult-to-treat autoimmune disease. Timosaponin AIII (TAIII), a plant-derived steroidal saponin, effectively inhibits cell proliferation, induces apoptosis, and exhibits anti-inflammatory properties. This study explored the mechanisms of action of TAIII in SS treatment by studying gut microbiota and short-chain fatty acids (SCFAs) using fecal metabolomics.

View Article and Find Full Text PDF

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

Ethylene glycol dinitrate (EGDN) is a nitrate ester explosive widely used in military ordnance and missile systems. This study investigates the decomposition dynamics of the EGDN cation using a comprehensive approach that combines femtosecond time-resolved mass spectrometry (FTRMS) experiments with electronic structure and molecular dynamics computations. We identify three distinct dissociation time scales for the metastable EGDN cation of approximately 40-60 fs, 340-450 fs, and >2 ps.

View Article and Find Full Text PDF

New Numerical Inversion Method to Improve the Spatial Accuracy of Elemental Imaging for LA-ICP-MS.

Anal Chem

January 2025

State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, PR China.

The elemental imaging of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) provides spatial information on elements and therefore can further investigate the growth or evolution processes of an analyte. However, the accurate determination of spatial information is limited by the decoupling between the elemental distribution and mass spectrometry signals. This phenomenon, which is more distinct when high-diffusion ablation cells are used, arises from the overlap of ablation and the transport dispersion of aerosols.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Aβ) plaques in the brain, contributing to neurodegeneration. This study investigates lipid alterations within these plaques using a novel, label-free, multimodal approach. Combining infrared (IR) imaging, machine learning, laser microdissection (LMD), and flow injection analysis mass spectrometry (FIA-MS), we provide the first comprehensive lipidomic analysis of chemically unaltered Aβ plaques in post-mortem human AD brain tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!