Chronic brain hypoperfusion (CBH) is a common clinical feature of Alzheimer's disease and vascular dementia, but the underlying molecular mechanism is unclear. Our previous study reported that the down-regulation of microRNA-195 (miR-195) promotes amyloidogenesis via regulation of amyloid precursor protein and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) expression at the post-transcriptional level in CBH rats with bilateral common carotid artery occlusion (2VO). CBH owing to unilateral common carotid artery occlusion (UCCAO) increases tau phosphorylation levels at multiple phosphorylation sites in the brain, but the molecular mechanism is poorly understood. The purpose of this study was to investigate whether miR-195 could both deregulate amyloid metabolism and indirectly deregulate tau phosphorylation in CBH. We observed that 2VO leads to tau hyperphosphorylation at Ser202/Thr205, Ser262, Thr231, and Ser422 and to the conversion from cyclin-dependent kinase 5 (Cdk5)/p35 to Cdk5/p25 in rat hippocampi. Endogenous miR-195 was knocked down using over-expression of its antisense molecule (pre-AMO-miR-195) via a lentivirus (lenti-pre-AMO-miR-195); this knockdown increased the tau phosphorylation at Ser202/Thr205, Ser262, Thr231, Ser422, and the Cdk5/p25 activation, but over-expression of miR-195 using lenti-pre-miR-195 decreased the tau phosphorylation and Cdk5/p25 activation. Further in vitro studies demonstrated that miR-195 over-expression prevented tau hyperphosphorylation and Cdk5/p35 activity, which were increased by miR-195 inhibition. A dual luciferase reporter assay showed that miR-195 bound to the Cdk5r1 gene, which encodes p35 protein, in the 3'UTR and inhibited p35 expression. We concluded that tau hyperphosphorylation involves the down-regulation of miR-195, which is mediated by Cdk5/p25 activation in 2VO rats. Our findings demonstrated that down-regulation of miR-195 led to increased vulnerability via the regulation of multiple targets. Schematic diagram of miR-195 mediated Aβ aggregation and tau hyperphosphorylation in chronic brain hypoperfusion (CBH). First, CBH results in the elevation of nuclear factor-κB (NF-κB), which binds with the promoter sequences of miR-195 and negatively regulates the expression of miR-195. Second, down-regulated miR-195 induces up-regulation of APP and BACE1 and leads to an increase in Aβ levels. Third, some of the elevated Aβ then enter the intracellular space and activate calpain, which promotes the conversion of Cdk5/p35 to Cdk5/p25 and catalyzes the degradation of IκB; IκB is an inhibitor of NF-κB, which activates NF-κB. Cdk5/p25 directly phosphorylates Tau. Fourth, down-regulated miR-195 induces an up-regulation of p35, which provides the active substrates of p25. Our findings demonstrated that the down-regulation of miR-195 plays a key role in the increased vulnerability to dementia via the regulation of multiple targets following CBH.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.13212DOI Listing

Publication Analysis

Top Keywords

tau phosphorylation
20
tau hyperphosphorylation
16
mir-195
15
chronic brain
12
brain hypoperfusion
12
cdk5/p25 activation
12
down-regulation mir-195
12
tau
10
hypoperfusion cbh
8
molecular mechanism
8

Similar Publications

Anti-herpetic tau preserves neurons via the cGAS-STING-TBK1 pathway in Alzheimer's disease.

Cell Rep

December 2024

School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA. Electronic address:

Alzheimer's disease (AD) diagnosis relies on the presence of extracellular β-amyloid (Aβ) and intracellular hyperphosphorylated tau (p-tau). Emerging evidence suggests a potential link between AD pathologies and infectious agents, with herpes simplex virus 1 (HSV-1) being a leading candidate. Our investigation, using metagenomics, mass spectrometry, western blotting, and decrowding expansion pathology, detects HSV-1-associated proteins in human brain samples.

View Article and Find Full Text PDF

Vascular endothelial growth factor receptor-1 (FLT1) interactions with amyloid-beta in Alzheimer's disease: A putative biomarker of amyloid-induced vascular damage.

Neurobiol Aging

December 2024

Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Pharmacology Department, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Epidemiology Doctoral Program, School of Medicine, Vanderbilt University, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA. Electronic address:

We have identified FLT1 as a protein that changes during Alzheimer's disease (AD) whereby higher brain protein levels are associated with more amyloid, more tau, and faster longitudinal cognitive decline. Given FLT1's role in angiogenesis and immune activation, we hypothesized that FLT1 is upregulated in response to amyloid pathology, driving a vascular-immune cascade resulting in neurodegeneration and cognitive decline. We sought to determine (1) if in vivo FLT1 levels (CSF and plasma) associate with biomarkers of AD neuropathology or differ between diagnostic staging in an aged cohort enriched for early disease, and (2) whether FLT1 expression interacts with amyloid on downstream outcomes, such as phosphorylated tau levels and cognitive performance.

View Article and Find Full Text PDF

Tau phosphorylation suppresses oxidative stress-induced mitophagy via FKBP8 receptor modulation.

PLoS One

January 2025

Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, New York, United States of America.

Neurodegenerative diseases are often characterized by mitochondrial dysfunction. In Alzheimer's disease, abnormal tau phosphorylation disrupts mitophagy, a quality control process through which damaged organelles are selectively removed from the mitochondrial network. The precise mechanism through which this occurs remains unclear.

View Article and Find Full Text PDF

Background: Applying single-cell RNA sequencing (scRNA-seq) to the study of neurodegenerative disease has propelled the field towards a more refined cellular understanding of Alzheimer's disease (AD); however, directly linking protein pathology to transcriptomic changes has not been possible at scale. Recently, a high-throughput method was developed to generate high-quality scRNA-seq data while retaining cytoplasmic proteins. Tau is a cytoplasmic protein and when hyperphosphorylated is integrally involved in AD progression.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is the most common tauopathy and characterized by the progressive accumulation of Aß and tau. Tau is expressed in two major isoforms containing either 3 or 4 c-terminal repeats labeled as 3R and 4R tau. While these two isoforms occur in roughly equimolar ratios in AD, most research focus and mouse models of tau center only the 4Rtau protein and not 3Rtau.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!