AI Article Synopsis

  • Culex flavivirus (CxFV) is an insect-specific virus first isolated in China in 2006, with strains found in various Culex mosquito species across multiple continents.
  • In a study from 2004 to 2012, researchers collected over 46,000 mosquitoes from seven provinces in China, identifying 29 positive CxFV samples, particularly from Shandong, Henan, and Shaanxi, while no virus was found in other provinces.
  • Phylogenetic analysis indicated that Chinese CxFV strains are closely related to those in the U.S. and Japan, highlighting a widespread geographic distribution of the virus in China, but with clear limitations on its spread.

Article Abstract

Culex flavivirus (CxFV) is an insect-specific virus of the genus Flavivirus. CxFV strains have been isolated from Cx. pipiens, Cx. quinquefasciatus, and other Cx. species in Asia, Africa, North America, Central America and South America. CxFV was isolated for the first time in China in 2006. As this is a novel flavivirus, we explored the distribution and genetic characteristics of Culex flavivirus in China. A total of 46,649 mosquitoes were collected in seven provinces between 2004 and 2012 and were analysed in 871 pools. 29 CxFV RNAs from Cx. pipiens, Cx. tritaeniorhynchus, Anopheles Sinensis, and Culex spp. tested positive for CxFV in real-time RT-PCR. 6 CxFV strains were isolated from Cx. species collected in Shandong, Henan, and Shaanxi provinces, while no virus or viral RNA was detected in samples from Sichuan, Chongqing, Hubei, and Fujian. Phylogenetic analysis of the envelope gene indicated that Chinese strains formed a robust subgroup of genotype 1, together with viruses from the United States and Japan. This study demonstrates that the geographic distribution of CxFV in China is widespread, but geographical boundaries to spread are apparent. Our findings suggest that CxFV can infect various mosquito species in nature.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00705-015-2492-1DOI Listing

Publication Analysis

Top Keywords

culex flavivirus
12
phylogenetic analysis
8
cxfv
8
flavivirus cxfv
8
cxfv strains
8
strains isolated
8
flavivirus
5
distribution phylogenetic
4
culex
4
analysis culex
4

Similar Publications

The West Nile virus (WNV) has recently become more widespread, posing a threat to both human and animal health. In Western Europe, most outbreaks have been caused by WNV lineage 1, while in Eastern Europe, WNV lineage 2 has led to human and bird mortality. The ability to appropriately manage this threat is dependent on integrated surveillance and early detection.

View Article and Find Full Text PDF

Recent studies have revealed that many mosquito species regularly engage in high-altitude windborne migration, but its epidemiological significance was debated. The hypothesis that high-altitude mosquitoes spread pathogens over large distances has not been directly tested. Here, we report for the first time that high-altitude windborne mosquitoes are commonly infected with arboviruses, protozoans, and helminths affecting vertebrates and humans, and provide the first description of this pathogen-vector aerial network.

View Article and Find Full Text PDF

Vector competence of Culex quinquefasciatus from Santiago Island, Cape Verde, to West Nile Virus: exploring the potential effect of the vector native Wolbachia.

Parasit Vectors

December 2024

Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008, Lisbon, Portugal.

Background: Culex quinquefasciatus plays a crucial role as a vector of West Nile virus (WNV). This mosquito species is widely distributed in Cape Verde, being found in all inhabited islands of the archipelago. However, no data are currently available on the susceptibility of the local mosquito population to WNV.

View Article and Find Full Text PDF

Overwintering of Usutu virus in mosquitoes, The Netherlands.

Parasit Vectors

December 2024

Laboratory of Entomology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands.

Analyses of mosquito-borne virus outbreaks have revealed the presence of similar virus strains over several years. However, it remains unclear how mosquito-borne viruses can persist over winter, when conditions are generally unfavorable for virus circulation. One potential route for virus persistence is via diapausing mosquitoes.

View Article and Find Full Text PDF

The genus Alphavirus harbors arboviruses of great concern, such as the Chikungunya virus and the equine encephalitis viruses. Transmission of pathogenic alphaviruses by mosquitoes could be influenced by insect-specific alphaviruses such as Eilat virus (EILV). However, insect-specific alphaviruses are rarely found in wild mosquitoes and only a few have been described in the literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!