A variety of bioactive materials have been investigated as substitute materials for diseased or damaged bone tissues in dentistry. The aim of this study was to prepare mesoporous silica containing biomaterials by sol-gel technology. These materials may be combinated with hydroxyapatite and β-tricalcium phosphate, as bioactive agents. The synthesis and testing of important physical parameters were performed. Based on these measurements, the silica aerogel can be an applicable material in the dental field in the future.
Download full-text PDF |
Source |
---|
J Org Chem
January 2025
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
-Difluorohomoallyl amines, an important class of -difluoroalkenes, are prevalent moieties in many bioactive compounds. However, limited methods are suitable for the synthesis of this type of compound containing secondary amines. Here, we display a photocatalytic multicomponent protocol for the synthesis of -difluoroalkenes containing secondary amines, which makes use of readily available materials: arylamines, alkyl aldehydes, and α-trifluoromethyl alkenes.
View Article and Find Full Text PDFJ Xenobiot
December 2024
Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
Skin represents an effective barrier against the penetration of external agents into the human body. Nevertheless, recent research has shown that small particles, especially in the nanosized range, can not only penetrate through the skin but also work as vectors to transport active molecules such as contrast agents or drugs. This knowledge has opened new perspectives on nanomedicine and controlled drug delivery.
View Article and Find Full Text PDFJ Org Chem
January 2025
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
We report the rapid synthesis of primary amides by directly using commercially available ammonia borane (NH·BH), sodium hexamethyldisilazide (NaHMDS), and esters. The success of this protocol relies on NH·BH as the nitrogen source being considerably more convenient and NaHMDS being an excellent proton abstractor but not participating in the nucleophilic addition reaction. The reaction had a wide substrate scope containing bioactive molecules, and most of the substrates were efficiently amidated over 90% yields.
View Article and Find Full Text PDFBioact Mater
April 2025
Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.
Articular cartilage has a limited self-healing capacity, leading to joint degeneration and osteoarthritis over time. Therefore, bioactive scaffolds are gaining attention as a promising approach to regenerating and repairing damaged articular cartilage through tissue engineering. In this study, we reported on a novel 3D bio-printed proteinaceous bioactive scaffolds combined with natural porcine cancellous bone dECM, tempo-oxidized cellulose nanofiber (TOCN), and alginate carriers for TGF-β1, FGF-18, and ADSCs to repair cartilage defects.
View Article and Find Full Text PDFBiomater Res
January 2025
Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China.
As a complex and dynamically regulated process, wound healing is collaboratively carried out by multiple types of cells. However, the precise mechanisms by which these cells contribute to immune regulation are not yet fully understood. Although research on bone regeneration has been quite extensive, the application of bioactive glass (BG) in skin tissue repair remains still relatively underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!