Fluorescence interference is one of common interference factors during detection of Raman spectroscopy, while shifted-excitation Raman difference spectroscopy (SERDS) is an effective detection means to reject it. SERDS excites the test substance by two laser with different wavelengths, then difference the obtained Raman spectroscopies. SERDS can eliminate the fluorescence interference effectively, because the fluorescence backgrounds of the two spectroscopies are the same while the Raman peaks are translated. The key factor of SERDS is the stability of the two excitation light wavelengths, the instability of wavelength difference would seriously affect the characteristics of the Raman peak reproduction. In this paper, the Raman spectroscopy measurement system is presented, where dual wavelength laser module can stably produce two bunch of excitation light (respectively 784.7 and 785.8 nm), which satisfies the requirements of SERDS detection. The major factors influencing wavelength of the laser are laser power and temperature. The system monitors them in real time to guarantee the stability of exciting light's wavelength. The hardware framework of this measurement system is mainly composed of ARM, dual wavelength laser module as well as its driving circuit, temperature control circuit, a digital optical switch, a spectrometer; the software of this system can achieve the Raman spectrogram automatically and then carry on the subsequent processing. The stability tests of this system for drive current and laser temperature are done. The experimental results demonstrate that the range of current proves to be less than 0.01 mA, the range of temperature less than 0.004 degrees C. The system can guarantee the stability of excitation wavelength effectively. Finally, perform the Raman spectroscopy detection to sesame oil of some brand and get good results.
Download full-text PDF |
Source |
---|
Nanoscale
January 2025
School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
Photonic crystals (PC) play a key role in optical field modulation due to their unique photonic band gaps (PBGs). Anodic aluminum oxide (AAO) prepared by pulse anodization is a promising candidate for PC devices. In this research, an AAO-based PC with multi-band was fabricated on a single-slice & single-material film, which exhibits multi-band responses in the visible-to-near-infrared (vis-NIR) region.
View Article and Find Full Text PDFSmall
January 2025
Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
The properties and device applications of 2D semiconductors are highly sensitive to intrinsic structural defects due to their ultrathin nature. CuInSe (CIS) materials own excellent optoelectronic properties and ordered copper vacancies, making them widely applicable in photovoltaic and photodetection fields. However, the synthesis of 2D CIS nanoflakes remains challenging due to the nonlayered structure, multielement composition, and the competitive growth of various by-products, which further hinders the exploration of vacancy-related optoelectronic devices.
View Article and Find Full Text PDFAnal Chem
January 2025
Laboratory for Air Pollution/Environmental Technology, Empa, 8600 Dübendorf, Switzerland.
Mid-infrared laser absorption spectroscopy enables rapid and nondestructive analysis of methane clumped isotopes. However, current analytical methods require a sample size of 20 mL STP (0.82 mmol) of pure CH gas, which significantly limits its application to natural samples.
View Article and Find Full Text PDFIn this study, we present an unexplored approach for remote focus manipulation using 3D nanoprinted holograms integrated on the end face of multi-core single-mode fibers. This innovative method enables precise focus control within a monolithic metafiber device by allowing light coupled into any of the 37 cores to be precisely focused at predefined locations. Our approach demonstrates significant advances over conventional lenses and offers unique functionalities through computationally designed holograms.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
Polarized photodetectors based on anisotropic two-dimensional (2D) materials display great potential applications in communications and optoelectronics. However, the existence of high dark current, low anisotropic ratio, and response speed limits their development. In this paper, a broadband polarization angle-dependent photodetector based on the PdSe/NbSe van der Waals (vdW) heterojunction has been constructed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!