The dominant point defects in II-VI group telluride bulk crystals grown from melt usually varied due to different growth conditions and cooling history, in turn affect the electrical and optical behaviors of corresponding single crystals and devices. Low temperature photoluminescence (PL) spectra acts as a contact-less and non-destructive technique, can be used to evaluate the behaviors of point defects and impurities in the as-grown telluride bulk crystals. With the purpose of comparing the defect structures in un-doped ZnTe and CdTe crystals grown under Te-rich condition, 8. 6 K PL spectra were obtained. The conductivity type and resistivity were investigated by Hall-effect measurements at room temperature (RT). For p-type low resistivity ZnTe crystal, the intensity of. free electron to neutral acceptor (e, A(0)) transition is higher than the donor-acceptor pair (DAP) transition, which predominates in the PL spectra. However, in the contrary, DAP peak dominates the PL emissions for n-type high resistivity CdTe. This difference is mainly attributed to the distinct properties of the grown-in point defects due to different growth. velocities and cooling processes. In terms of the un-doped CdZnTe crystal grown under stoichiometry, neutral donor bound exciton (D(0), X) emission is predominated in the 9.2 K PL spectra, with the intensity of (e, A(0)) peak is higher than DAP peak, which then overlaps to each other when the temperature higher then 15 K. In the case of In-doped CdZnTe crystal grown by Te-rich situation, A-center emission is clearly observed, which introduces an energy level approximately of 0.15 eV, with the intensity proportional to the concentration of indium dopant. This defect is seemingly related to the complex of [In(Cd)+V(Cd)2-]- formed by a shallow donor In(Cd) and Cd vacancy.
Download full-text PDF |
Source |
---|
J Phys Condens Matter
December 2024
Department of Physics, Indian Institute of Technology Delhi, DEPRTMENT OF PHYSICS, IIT DELHI, HAUZ KHAS, New Delhi, Delhi, 110016, INDIA.
Time-reversal symmetry breaking of a topological insulator phase generates zero-field edge modes which are the hallmark of the quantum anomalous Hall effect (QAHE) and of possible value for dissipation-free switching or non-reciprocal microwave devices. But present material systems exhibiting the QAHE, such as magnetically doped bismuth telluride and twisted bilayer graphene, are intrinsically unstable, limiting their scalability. A pristine magnetic oxide at the surface of a TI would leave the TI structure intact and stabilize the TI surface, but epitaxy of an oxide on the lower-melting-point chalcogenide presents a particular challenge.
View Article and Find Full Text PDFScience
December 2024
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.
The recently discovered metal-like room-temperature plasticity in inorganic semiconductors reshapes our knowledge of the physical properties of materials, giving birth to a series of new-concept functional materials. However, current room-temperature plastic inorganic semiconductors are still very rare, and their performance is inferior to that of classic brittle semiconductors. Taking classic bismuth telluride (BiTe)-based thermoelectric semiconductors as an example, we show that antisite defects can lead to high-density, diverse microstructures that substantially affect mechanical properties and thus successfully transform these bulk semiconductors from brittle to plastic, leading to a high figure of merit of up to 1.
View Article and Find Full Text PDFAdv Mater
November 2024
Songshan Lake Materials Laboratory, Dongguan, 523808, China.
To generate and manipulate spin-polarized electronic states in solids are crucial for modern spintronics. The textbook routes employ quantum well states or Shockley/topological type surface states whose spin degeneracy is lifted by strong spin-orbit coupling and inversion symmetry breaking at the surface/interface. The resultant spin polarization is usually truncated because of the intertwining between multiple orbitals.
View Article and Find Full Text PDFAdv Mater
November 2024
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
Achieving both formability and functionality in thermoelectric materials remains a significant challenge due to their inherent brittleness. Previous approaches, such as polymer infiltration, often compromise thermoelectric efficiency, underscoring the need for flexible, all-inorganic alternatives. This study demonstrates that the extreme brittleness of thermoelectric bismuth telluride (BiTe) bulk compounds can be overcome by harnessing the nanoscale flexibility of BiTe nanoribbons and twisting them into a yarn structure.
View Article and Find Full Text PDFHeliyon
August 2024
Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC) Isaac Newton, 8, E-28760, Tres Cantos, Madrid, Spain.
Bismuth telluride, a highly efficient thermoelectric material, stands out for applications around room temperature in wearable devices. By harnessing the thermal gradient established between the human body and ambient temperature, we can generate useable electricity. Notably, bismuth telluride nanostructures exhibit significantly lower thermal conductivities compared to their bulk counterparts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!