Comparing humans and nonhuman great apes in the broken cloth problem: Is their knowledge causal or perceptual?

J Exp Child Psychol

Department of Developmental and Comparative Psychology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; School of Psychology and Neuroscience, University of St. Andrews, St. Andrews, Fife KY16 9JP, UK.

Published: November 2015

When presented with the broken cloth problem, both human children and nonhuman great apes prefer to pull a continuous cloth over a discontinuous cloth in order to obtain a desired object resting on top. This has been interpreted as evidence that they preferentially attend to the functionally relevant cues of the task (e.g., presence or absence of a gap along the cloth). However, there is controversy regarding whether great apes' behavior is underpinned by causal knowledge, involving abstract concepts (e.g., support, connection), or by perceptual knowledge, based on percepts (e.g., contact, continuity). We presented chimpanzees, orangutans, and 2-, 3-, and 4-year-old children with two versions of the broken cloth problem. The Real condition, made with paper strips, could be solved based on either perceptual cues or causal knowledge. The Painted condition, which looked very similar, could be solved only by attending to perceptual cues. All groups mastered the Real condition, in line with previous results. Older children (3- and 4-year-olds) performed significantly better in this condition than all other groups, but the performance of apes and children did not differ sharply, with 2-year-olds and apes obtaining similar results. In contrast, only 4-year-olds solved the Painted condition. We propose causal knowledge to explain the general good performance of apes and humans in the Real condition compared with the Painted condition. In addition, we suggest that symbolic knowledge might account for 4-year-olds' performance in the Painted condition. Our findings add to the growing literature supporting the idea that learning from arbitrary cues is not a good explanation for the performance of apes and humans on some kinds of physical task.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jecp.2015.06.004DOI Listing

Publication Analysis

Top Keywords

painted condition
16
broken cloth
12
cloth problem
12
causal knowledge
12
real condition
12
performance apes
12
nonhuman great
8
great apes
8
condition
8
perceptual cues
8

Similar Publications

Prenatal Diagnosis of Berry Syndrome by Fetal Echocardiography.

Ultrasound Q

March 2025

Department of Echocardiography, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.

Berry syndrome is a rare combination of cardiac malformations, which is characterized by the following malformations, including the aortopulmonary window, aortic right pulmonary origin, interrupted aortic arch or hypoplastic aortic arch or coarctation of the aorta, and an intact ventricular septum. There are few reviews on prenatal diagnosis of Berry syndrome by fetal echocardiography. We used sequential cross-sectional scanning from apex to bottom of the heart to find aortic right pulmonary origin, aortopulmonary window, and hypoplastic aortic arch.

View Article and Find Full Text PDF

This review focuses on our current understanding of how growth hormone releasing hormone (GHRH): 1) stimulates GH release and synthesis from pituitary growth hormone (GH)-producing cells (somatotropes), 2) drives somatotrope proliferation, 3) is negatively regulated by somatostatin (SST), GH and IGF1, 4) is altered throughout lifespan and in response to metabolic challenges, and 5) analogues can be used clinically to treat conditions of GH excess or deficiency. Although a large body of early work provides an underpinning for our current understanding of GHRH, this review specifically highlights more recent work that was made possible by state-of-the-art analytical tools, receptor-specific agonists and antagonists, high-resolution in vivo and ex vivo imaging and the development of tissue (cell) -specific ablation mouse models, to paint a more detailed picture of the regulation and actions of GHRH.

View Article and Find Full Text PDF

Microtopography-induced hydrological heterogeneity promotes the co-assembly of vascular plant and biocrust communities, providing synergistic protective functions for the Great Wall.

Sci Total Environ

January 2025

Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China. Electronic address:

The Great Wall in China, constructed from rammed earth, faces threats from natural erosion. Vascular plants and biocrusts have enhanced the stability of the Great Wall through various mechanisms; however, understanding of the colonization processes of vascular plants and biocrusts on the wall, as well as their protective mechanisms, remains limited. This study investigated the vascular plant communities, biocrusts, soil moisture content, soil properties, aggregate mechanical stability, aggregate water stability, and soil erodibility factors across seven fine-scale microtopographies of the Great Wall (lower, middle, and upper zones on the east and west faces, as well as the wall crest).

View Article and Find Full Text PDF

Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity.

View Article and Find Full Text PDF

NIR-Reflective Black Photonic Films Designed for Effective LiDAR Recognition.

ACS Appl Mater Interfaces

January 2025

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

Conventional dark-tone paints absorb both visible light and near-infrared (NIR) wavelengths, posing a challenge for light detection and ranging (LiDAR) recognition in autonomous driving. To overcome this issue, various chemical and structural coating materials have been explored to selectively reflect NIR. In this study, we newly propose colloidal photonic crystals with a stopband in the NIR range, fabricated through the spontaneous formation of crystalline arrays of silica particles dispersed in a photocurable resin, as a potential solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!