Hypoxia inducible factor-1α: Its role in colorectal carcinogenesis and metastasis.

Cancer Lett

Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA. Electronic address:

Published: September 2015

Tumor growth creates a hypoxic microenvironment, which promotes angiogenesis and aggressive tumor growth and invasion. HIF1α is a central molecule involved in mediating these effects of hypoxia. In colorectal cancer (CRC), hypoxia stabilizes the transcription factor HIF1α, leading to the expression of genes that are involved in tumor vascularization, metastasis/migration, cell survival and chemo-resistance. Therefore, HIF1α is a rational target for the development of new therapeutics for CRC. This article reviews the central role of HIF1α in CRC angiogenesis, metastasis, and progression as well as the strategies to target HIF1α stabilization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2015.06.005DOI Listing

Publication Analysis

Top Keywords

tumor growth
8
hif1α
5
hypoxia inducible
4
inducible factor-1α
4
factor-1α role
4
role colorectal
4
colorectal carcinogenesis
4
carcinogenesis metastasis
4
metastasis tumor
4
growth creates
4

Similar Publications

Intraductal papillary neoplasm of the bile duct (IPNB) is a precursor lesion to biliary tract carcinoma. It is characterised by papillary growth within the bile ducts. The diagnosis and management of IPNB are challenging due to its varying presentations and overlapping features with other biliary diseases.

View Article and Find Full Text PDF

Implication of fibroblast growth factor 7 in ovarian cancer metastases and patient survival.

Front Oncol

January 2025

Gynecologic Oncology Section, Stephenson Cancer Center, Obstetrics and Gynecology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.

Background/objectives: Patients with ovarian cancer commonly experience metastases and recurrences, which contribute to high mortality. Our objective was to better understand ovarian cancer metastasis and identify candidate biomarkers and drug targets for predicting and preventing ovarian cancer recurrence.

Methods: Transcripts of 770 cancer-associated genes were compared in cells collected from ascitic fluid versus resected tumors of an ES-2 orthotopic ovarian cancer mouse model.

View Article and Find Full Text PDF

Novel Pt (II) Complexes With Anticancer Activity Against Pancreatic Ductal Adenocarcinoma Cells.

Bioinorg Chem Appl

December 2024

Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy.

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive type of solid tumor that is becoming more common. -[PtCl (NH)] (in short cisplatin or CDDP) has been shown to be effective in treating various cancers, including PDAC. However, the development of resistance to chemotherapy drugs has created a need for the synthesis of new anticancer agents.

View Article and Find Full Text PDF

RNA polymerase II (Pol II) regulates eukaryotic gene expression through dynamic phosphorylation of its C-terminal domain (CTD). Phosphorylation at Ser2 and Thr4 on the CTD is crucial for RNA 3' end processing and facilitating the recruitment of cleavage and termination factors. However, the transcriptional roles of most CTD-binding proteins remain poorly understood.

View Article and Find Full Text PDF

Cancer remains one of the most formidable challenges in modern medicine, due to its complex and dynamic nature, which demands innovative therapeutic approaches. One major challenge to cancer treatment is the tumour microenvironment and in particular tumour hypoxia (low oxygen levels), which contributes to tumour progression and immune evasion. At the cellular level, this is primarily governed by hypoxia-inducible factor (HIF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!