Sulfolobus solfataricus is an acidophilic hyperthermophilic crenarchaeon living at 80 °C in aerobic conditions. As other thermophilic organisms, S. solfataricus is resistant to gamma irradiation and we studied the response of this microorganism to this ionizing irradiation by monitoring cell growth, DNA integrity and proteome variations. In aerobic conditions, the S. solfataricus genome was fragmented due to the multiple DNA double strand breakages induced by γ-rays and was fully restored within a couple of hours. Comparison of irradiated and unirradiated cell proteomes indicated that only few proteins changed. The proteins identified by mass spectrometry are involved in different cellular pathways including DNA replication, recombination and repair. Interestingly, we observed that some proteins are irradiation dose-specific while others are common to the cell response regardless of the irradiation dose. Most of the proteins highlighted in these conditions seem to act together to allow an efficient cell response to γ-irradiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2015.06.014 | DOI Listing |
Nat Commun
January 2025
Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France.
The archaeal ribosome is of the eukaryotic type. TACK and Asgard superphyla, the closest relatives of eukaryotes, have ribosomes containing eukaryotic ribosomal proteins not found in other archaea, eS25, eS26 and eS30. Here, we investigate the case of Saccharolobus solfataricus, a TACK crenarchaeon, using mainly leaderless mRNAs.
View Article and Find Full Text PDFFront Microbiol
November 2024
Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
, a thermoacidophilic archaeon of the phylum Thermoproteota (former Crenarchaeota), is a widely used model organism for gene deletion studies and recombinant protein production. Previous research has demonstrated the efficacy of the promoter (P), providing low basal activity and high pentose-dependent induction. However, the available expression vector does not include a 5'-terminal untranslated region (5'-UTR), a typical element found in bacterial expression vectors that usually enhances protein production in bacteria.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China. Electronic address:
Icaritin (ICT), a compound with diverse biological activities derived from Epimedium folium, is typically present in low concentrations in EFs. However, the abundant glycosyl-modified ICT compounds facilitate its transformation into ICT. Current biocatalytic production faces challenges, including low conversion rates and limited enzyme activity.
View Article and Find Full Text PDFStructure
January 2025
RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK. Electronic address:
N-utilization substance A (NusA) is a regulatory factor with pleiotropic functions in gene expression in bacteria. Archaea encode two conserved small proteins, NusA1 and NusA2, with domains orthologous to the two RNA binding K Homology (KH) domains of NusA. Here, we report the crystal structures of NusA2 from Sulfolobus acidocaldarius and Saccharolobus solfataricus obtained at 3.
View Article and Find Full Text PDFBMC Microbiol
September 2024
Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
Background: Fusarium wilt is a devastating soil-borne fungal disease of tomato across the world. Conventional method of disease prevention including usage of common pesticides and methods like soil solarisation are usually ineffective in the treatment of this disease. Therefore, there is an urgent need to identify virulence related genes in the pathogen which can be targeted for fungicide development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!