Tremendous efforts have been dedicated to the development of effective therapeutics against Alzheimer's disease, which represents the most common debilitating neurodegenerative disease. Multifunctional agents are molecules designed to have simultaneous effects on different pathological processes. Such compounds represent an emerging strategy for the development of effective treatments against Alzheimer's disease. Here, we report on the synthesis and biological evaluation of a series of nitroxoline-based analogs that were designed by merging the scaffold of 8-hydroxyquinoline with that of a known selective butyrylcholinesterase inhibitor that has promising anti-Alzheimer properties. Most strikingly, compound 8g inhibits self-induced aggregation of the amyloid beta peptide (Aβ1-42), inhibits with sub-micromolar potency butyrylcholinesterase (IC50=215 nM), and also selectively complexes Cu(2+). Our study thus designates this compound as a promising multifunctional agent for therapeutic treatment of Alzheimer's disease. The crystal structure of human butyrylcholinesterase in complex with compound 8g is also solved, which suggests ways to further optimize compounds featuring the 8-hydroxyquinoline scaffold.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2015.06.010DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
12
development effective
8
structure-based development
4
development nitroxoline
4
nitroxoline derivatives
4
derivatives potential
4
potential multifunctional
4
multifunctional anti-alzheimer
4
anti-alzheimer agents
4
agents tremendous
4

Similar Publications

Background And Objectives: Blood-based biomarkers of amyloid and tau have been shown to predict Alzheimer disease (AD) dementia. Much less is known about their ability to predict risk of mild cognitive impairment (MCI), an earlier disease stage. This study examined whether levels of blood biomarkers of amyloid (Aβ/Aβ ratio), tau (p-tau), neurodegeneration (NfL), and glial activation and neuroinflammation (glial fibrillary acidic protein [GFAP], YKL40, soluble triggering receptor expressed on myeloid cells 2 [sTREM2]) collected when participants were cognitively normal are associated with the time to onset of MCI.

View Article and Find Full Text PDF

Alzheimer's disease (AD) and mild cognitive impairment (MCI) are a serious global public health problem. The aim of this study was to analyze the key molecular pathological mechanisms that occur in early AD progression as well as MCI. Expression profiling data from brain homogenates of 8 normal volunteers, and 6 patients with prodromal AD who had developed MCI were analyzed, and the data were obtained from GSE12685.

View Article and Find Full Text PDF

Objective: There is a dearth of research on neuropsychological functioning and the validity of assessment measures in American Indian (AI) older adults. The present study sought to comprehensively examine neuropsychological functioning in cognitively normal AI older adults in the southwestern USA (i.e.

View Article and Find Full Text PDF

pH and peroxynitrite (ONOO) are two critical biomarkers to unveil the corresponding status of endoplasmic reticulum (ER) stress and mitochondrial dysfunction, which are closely related to Alzheimer's disease (AD). Simultaneously monitoring pH and ONOO fluctuations in the ER and mitochondria during AD progression is pivotal for clarifying the interplay between the disorders of the two organelles and revealing AD pathogenesis. Herein, we designed and synthesized a dual-channel fluorescent probe (DCFP) to visualize pH and ONOO in the ER and mitochondria.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of dementia worldwide. AD brains are characterized by the accumulation of amyloid-β peptides (Aβ) that bind Cu and have been associated with several neurotoxic mechanisms. Although the use of copper chelators to prevent the formation of Cu-Aβ complexes has been proposed as a therapeutic strategy, recent studies show that copper is an important neuromodulator that is essential for a neuroprotective mechanism mediated by Cu binding to the cellular prion protein (PrP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!