Selenoprotein biosynthesis defect causes progressive encephalopathy with elevated lactate.

Neurology

From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands.

Published: July 2015

Objective: We aimed to decipher the molecular genetic basis of disease in a cohort of children with a uniform clinical presentation of neonatal irritability, spastic or dystonic quadriplegia, virtually absent psychomotor development, axonal neuropathy, and elevated blood/CSF lactate.

Methods: We performed whole-exome sequencing of blood DNA from the index patients. Detected compound heterozygous mutations were confirmed by Sanger sequencing. Structural predictions and a bacterial activity assay were performed to evaluate the functional consequences of the mutations. Mass spectrometry, Western blotting, and protein oxidation detection were used to analyze the effects of selenoprotein deficiency.

Results: Neuropathology indicated laminar necrosis and severe loss of myelin, with neuron loss and astrogliosis. In 3 families, we identified a missense (p.Thr325Ser) and a nonsense (p.Tyr429*) mutation in SEPSECS, encoding the O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase, which was previously associated with progressive cerebellocerebral atrophy. We show that the mutations do not completely abolish the activity of SEPSECS, but lead to decreased selenoprotein levels, with demonstrated increase in oxidative protein damage in the patient brain.

Conclusions: These results extend the phenotypes caused by defective selenocysteine biosynthesis, and suggest SEPSECS as a candidate gene for progressive encephalopathies with lactate elevation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4520820PMC
http://dx.doi.org/10.1212/WNL.0000000000001787DOI Listing

Publication Analysis

Top Keywords

selenoprotein biosynthesis
4
biosynthesis defect
4
defect progressive
4
progressive encephalopathy
4
encephalopathy elevated
4
elevated lactate
4
lactate objective
4
objective aimed
4
aimed decipher
4
decipher molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!