Vascular calcification is a complex process and has been associated with aging, diabetes, chronic kidney disease (CKD). Although there have been several studies that examine the role of miRNAs (miRs) in bone osteogenesis, little is known about the role of miRs in vascular calcification and their role in the pathogenesis of vascular abnormalities. Matrix vesicles (MV) are known to play in important role in initiating vascular smooth muscle cell (VSMC) calcification. In the present study, we performed miRNA microarray analysis to identify the dysregulated miRs between MV and VSMC derived from CKD rats to understand the role of post-transcriptional regulatory networks governed by these miRNAs in vascular calcification and to uncover the differential miRNA content of MV. The percentage of miRNA to total RNA was increased in MV compared to VSMC. Comparison of expression profiles of miRNA by microarray demonstrated 33 miRs to be differentially expressed with the majority (~ 57%) of them down-regulated. Target genes controlled by differentially expressed miRNAs were identified utilizing two different complementary computational approaches Miranda and Targetscan to understand the functions and pathways that may be affected due to the production of MV from calcifying VSMC thereby contributing to the regulation of genes by miRs. We found several processes including vascular smooth muscle contraction, response to hypoxia and regulation of muscle cell differentiation to be enriched. Signaling pathways identified included MAP-kinase and wnt signaling that have previously been shown to be important in vascular calcification. In conclusion, our results demonstrate that miRs are concentrated in MV from calcifying VSMC, and that important functions and pathways are affected by the miRs dysregulation between calcifying VSMC and the MV they produce. This suggests that miRs may play a very important regulatory role in vascular calcification in CKD by controlling an extensive network of post-transcriptional targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4482652 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0131589 | PLOS |
BMJ Open
December 2024
Department of Vascular Surgery, Leids Universitair Medisch Centrum, Leiden, The Netherlands.
Introduction: Foot ulcers are one of the most serious complications of diabetes, leading to significant risks on amputation and mortality. Peripheral arterial disease (PAD) is an important factor for the development and the outcome of diabetic foot ulcers (DFU). Although prompt and accurate detection of PAD is critical to reduce complications, its diagnosis can be challenging with currently used bedside tests (such as ankle-brachial index and toe pressure) due to medial arterial calcification.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Nephrology, Yiyang Central Hospital, 118 Kangfubei Road, Yiyang, 413000, Hunan, China.
Vascular calcification is considered to be a killer of the cardiovascular system, involved inflammation and immunity. There is no approved therapeutic strategy for the prevention of vascular calcification. Sinomenine exhibited anti-inflammatory and immunosuppressive effects.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
First Teaching Hospital of Tianjin University of Traditional Chinese Medicine Tianjin 300381, China National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion Tianjin 300381,China.
Vascular calcification significantly increases the incidence of cardiovascular disease and all-cause mortality patients with chronic kidney disease(CKD), severely affecting their health and lifespan. However, the mechanisms underlying vascular calcification in CKD remain incompletely understood, and the available therapeutic agents are limited. Research has found that the transformation of vascular smooth muscle cells(VSMCs) from a contractile phenotype to an osteoblast-like phenotype is a key step in CKD-related vascular calcification.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University 87 Dingjiaqiao, Nanjing, P.R. China.
Autophagic flux blockade and excessive oxidative stress play important roles in the pathogenesis of diabetic vascular calcification (VC). Transcription factor EB (TFEB) is an important regulator of many autophagy-lysosomal related components, which is mainly involved in promoting autophagy process in cells. Nuclear factor erythroid-2 related factor 2 (Nrf2) antioxidant system is considered as one of the key pathways in response to intracellular oxidative stress.
View Article and Find Full Text PDFRheumatol Int
January 2025
Copenhagen Research Center for Autoimmune Connective Tissue Diseases (COPEACT), Copenhagen University Hospital, Rigshospitalet, Denmark.
To investigate if progression of coronary artery calcification (CAC) in patients with systemic lupus erythematosus (SLE) is associated with renal and traditional cardiovascular risk factors as well as incidence of myocardial infarctions. CAC progression was evaluated by cardiac computed tomography (CT) at baseline and after 5 years. Multivariable Poisson regression was applied to investigate associations between CAC progression and baseline values for traditional cardiovascular risk factors, CAC, SLE disease duration, lupus nephritis, and renal function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!