Photothermal OCT (PTOCT) provides high sensitivity to molecular targets in tissue, and occupies a spatial imaging regime that is attractive for small animal imaging. However, current implementations of PTOCT require extensive temporal sampling, resulting in slow frame rates and a large data burden that limit its in vivo utility. To address these limitations, we have implemented optical lock-in techniques for photothermal optical lock-in OCT (poli-OCT), and demonstrated the in vivo imaging capabilities of this approach. The poli-OCT signal was assessed in tissue-mimicking phantoms containing indocyanine green (ICG), an FDA approved small molecule that has not been previously imaged in vivo with PTOCT. Then, the effects of in vivo blood flow and motion artifact were assessed and attenuated, and in vivo poli-OCT was demonstrated with both ICG and gold nanorods as contrast agents. Experiments revealed that poli-OCT signals agreed with optical lock-in theory and the bio-heat equation, and the system exhibited shot noise limited performance. In phantoms containing biologically relevant concentrations of ICG (1 µg/ml), the poli-OCT signal was significantly greater than control phantoms (p<0.05), demonstrating sensitivity to small molecules. Finally, in vivo poli-OCT of ICG identified the lymphatic vessels in a mouse ear, and also identified low concentrations (200 pM) of gold nanorods in subcutaneous injections at frame rates ten times faster than previously reported. This work illustrates that future in vivo molecular imaging studies could benefit from the improved acquisition and analysis times enabled by poli-OCT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4473760PMC
http://dx.doi.org/10.1364/BOE.6.002268DOI Listing

Publication Analysis

Top Keywords

optical lock-in
16
photothermal optical
8
vivo imaging
8
poli-oct demonstrated
8
poli-oct signal
8
vivo
6
poli-oct
5
lock-in
4
optical
4
lock-in optical
4

Similar Publications

Enhancing Functional Breast Imaging: A sCMOS Camera-Based Lock-in Implementation for Dynamic Tomography.

J Biophotonics

January 2025

The College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, China.

Diffuse optical tomography (DOT) enables the in vivo quantification of tissue chromophores, specifically the discernment of oxy- and deoxy-hemoglobin (HbO and HbR, correspondingly). This specific criterion is useful in detecting and predicting early-stage neoadjuvant breast cancer treatment response. To address the issues of the limited channels in the fiber-dependent breast DOT system and limited signal-to-noise ratio in the camera-dependent systems, we hereby present a camera-based lock-in detection scheme to achieve dynamic DOT with improved SNR, which adopted orthogonal frequency division multiplexing technology.

View Article and Find Full Text PDF

Revealing Single-Molecule Photocurrent Generation Mechanisms under On- and Off-Resonance Excitation.

Nano Lett

January 2025

Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

We investigate photocurrent generation mechanisms in a pentacene single-molecule junction using subnanometer resolved photocurrent imaging under both on- and off-resonance laser excitation. By employing a wavelength-tunable laser combined with a lock-in technique, net photocurrent signals are extracted to elucidate photoinduced electron tunneling processes. Under off-resonance excitation, photocurrents are found to arise from photon-assisted tunneling, with contributions from three distinct frontier molecular orbitals at different bias voltages.

View Article and Find Full Text PDF

Infrared imaging of magnetic octupole domains in non-collinear antiferromagnets.

Natl Sci Rev

June 2024

International Center for Quantum Design of Functional Materials (ICQD), School of Emerging Technology, University of Science and Technology of China, Hefei 230026, China.

Article Synopsis
  • The study highlights the importance of magnetic structure in antiferromagnets (AFMs), emphasizing their potential for digital data encoding and novel physical phenomena.
  • Despite their significance, visualizing the domain structure of non-collinear AFMs remains challenging, with current methods limited to materials like MnSn.
  • The researchers introduce a new imaging technique using the anomalous Ettingshausen effect (AEE) that allows for simultaneous observation of magnetic domains in various non-collinear AFMs, enhancing understanding of their magnetization processes.
View Article and Find Full Text PDF

Scattering-type scanning near-field optical microscopy (s-SNOM) enables sub-diffraction spectroscopy, featuring high sensitivity to small spatial permittivity variations of the sample surface. However, due to the complexity of the near-field probe-sample interaction, the quantitative extraction of the complex permittivity leads to a computationally demanding inverse problem, requiring further approximation of the system to an invertible model. Black-box calibration methods, similar to those applied to microwave vector network analyzers, allow the extraction of the permittivity without detailed electromagnetic modeling of the probe-sample interaction.

View Article and Find Full Text PDF

One-way transmission of light constitutes the cornerstone of modern photonic circuits. In the realm of photonic devices, it has been widely utilized in isolators, circulators, etc. Recent topology in artificial materials, an unprecedented degree of freedom, has been proposed to solve the effect of impurities on one-way transmission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!