A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of defocus on quantitative analysis of microscopic objects and individual cells with digital holography. | LitMetric

Influence of defocus on quantitative analysis of microscopic objects and individual cells with digital holography.

Biomed Opt Express

Department of Biomedical Engineering and Fitzpatrick Institute for Photonics, Duke University, Durham NC 27708, USA.

Published: June 2015

Digital holography offers a unique method for studying microscopic objects using quantitative measurements of the optical phase delays of transmitted light. The optical phase may be integrated across the object to produce an optical volume measurement, a parameter related to dry mass by a simple scaling factor. While digital holography is useful for comparing the properties of microscopic objects, especially cells, we show here that quantitative comparisons of optical phase can be influenced by the focal plane of the measurement. Although holographic images can be refocused digitally using Fresnel propagation, ambiguity can result if this aspect is not carefully controlled. We demonstrate that microscopic objects can be accurately profiled by employing a digital refocusing method to analyze phase profiles of polystyrene microspheres and red blood cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4473744PMC
http://dx.doi.org/10.1364/BOE.6.002067DOI Listing

Publication Analysis

Top Keywords

microscopic objects
16
digital holography
12
optical phase
12
influence defocus
4
defocus quantitative
4
quantitative analysis
4
microscopic
4
analysis microscopic
4
objects
4
objects individual
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!