Galangin and myricetin are flavonoids isolated from vegetables and fruits which exhibit anti-proliferative activity in human cancer cells. In this study, their anti-angiogenic effects were investigated with (HUVEC) and (CAM) models, which showed that galangin and myricetin inhibited angiogenesis induced by OVCAR-3 cells. The molecular mechanisms through which galangin and myricetin suppress angiogenesis were also studied. It was observed that galangin and myricetin inhibited secretion of the key angiogenesis mediator vascular endothelial growth factor (VEGF) and decreased levels of p-Akt, p-70S6K and hypoxia-inducible factor-1α (HIF-1α) proteins in A2780/CP70 and OVCAR-3 cells. Transient transfection experiments showed that galangin and myricetin inhibited secretion of VEGF by the Akt/p70S6K/ HIF-1α pathway. Moreover, a novel pathway, p21/HIF-1α/VEGF, was found to be involved in the inhibitory effect of myricetin on angiogenesis in OVCAR-3 cells. These data suggest that galangin and myricetin might serve as potential anti-angiogenic agents in the prevention of ovarian cancers dependent on new blood vessel networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476554PMC
http://dx.doi.org/10.1016/j.jff.2015.03.051DOI Listing

Publication Analysis

Top Keywords

galangin myricetin
28
myricetin inhibited
12
ovcar-3 cells
12
myricetin
8
myricetin suppress
8
inhibited secretion
8
galangin
7
angiogenesis
5
dietary compounds
4
compounds galangin
4

Similar Publications

The complex and multi-stage processes of carcinogenesis are accompanied by a number of phenomena related to the potential involvement of various chemopreventive factors, which include, among others, compounds of natural origin such as flavonols. The use of flavonols is not only promising but also a recognized strategy for cancer treatment. The chemopreventive impact of flavonols on cancer arises from their ability to act as antioxidants, impede proliferation, promote cell death, inhibit angiogenesis, and regulate the immune system through involvement in diverse forms of cellular death.

View Article and Find Full Text PDF

Flavonoids are organic compounds characterized by a range of phenolic structures, which are abundantly present in various natural sources such as fruits, vegetables, cereals, bark, roots, stems, flowers, tea, and wine. The health advantages of these natural substances are renowned, and initiatives are being taken to extract the flavonoids. Apigenin, galangin, hesperetin, kaempferol, myricetin, naringenin, and quercetin are the seven most common compounds belonging to this class.

View Article and Find Full Text PDF

Comparative analysis of differential gene expression reveals novel insights into the heteroblastic foliage functional traits of Pinus massoniana seedlings.

Int J Biol Macromol

April 2024

Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang 550025, China; Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China; College of Forestry, Guizhou University, Guiyang 550025, China. Electronic address:

Pinus massoniana needles, rich in medicinal polysaccharides and flavonoids, undergo heteroblastic foliage, transitioning from primary needles (PN) to secondary needles (SN) during growth, resulting in altered functional traits. Despite its significance, the molecular regulatory mechanisms governing these traits remain unclear. This study employs Iso-Seq and RNA-Seq analyses to explore differentially expressed genes (DEGs) associated with functional traits throughout the main growth season of heteroblastic foliage.

View Article and Find Full Text PDF

Flavonoids, ubiquitously distributed in the plant world, are regularly ingested with diets rich in fruit, vegetables, wine, and tea. During digestion, they are partially absorbed in the stomach. The present work aimed to assess the in vitro effects of quercetin and ten structurally related flavonoids on the rat gastric fundus smooth muscle, focussing on ATP-dependent K (K6.

View Article and Find Full Text PDF

Regulation Mechanism of Phenolic Hydroxyl Number on Self-Assembly and Interaction between Edible Dock Protein and Hydrophobic Flavonoids.

J Agric Food Chem

November 2023

Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.

In this study, galangin (Gal), kaempferol (Kae), quercetin (Que), and myricetin (Myr) were chosen as the representative flavonoids with different phenolic hydroxyl numbers in the B-ring. The edible dock protein (EDP) was chosen as the new plant protein. Based on this, the regulation mechanism of the phenolic hydroxyl number on the self-assembly behavior and molecular interaction between EDP and flavonoid components were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!