Targeting ATM-deficient CLL through interference with DNA repair pathways.

Front Genet

Department of Internal Medicine, University Hospital of Cologne Cologne, Germany ; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne Cologne, Germany.

Published: June 2015

Chronic lymphocytic leukemia (CLL) is the most common form of leukemia in the Western world and accounts for approximately 30% of adult leukemias and 25% of non-Hodgkin lymphomas. The median age at diagnosis is 72 years. During recent years numerous genetic aberrations have been identified that are associated with an aggressive course of the disease and resistance against genotoxic chemotherapies. The DNA damage-responsive proapoptotic ATM-CHK2-p53 signaling pathway is frequently mutationally inactivated in CLL either through large deletions on chromosome 11q (ATM) or 17p (TP53), or through protein-damaging mutations. Here, we focus on the role of ATM signaling for the immediate DNA damage response, DNA repair and leukemogenesis. We further discuss novel therapeutic concepts for the targeted treatment of ATM-defective CLLs. We specifically highlight the potential use of PARP1 and DNA-PKcs inhibitors for the treatment of ATM-mutant CLL clones. Lastly, we briefly discuss the current state of genetically engineered mouse models of the disease and emphasize the use of these preclinical tools as a common platform for the development and validation of novel therapeutic agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461826PMC
http://dx.doi.org/10.3389/fgene.2015.00207DOI Listing

Publication Analysis

Top Keywords

dna repair
8
novel therapeutic
8
targeting atm-deficient
4
cll
4
atm-deficient cll
4
cll interference
4
dna
4
interference dna
4
repair pathways
4
pathways chronic
4

Similar Publications

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.

View Article and Find Full Text PDF

Vitamin Bs as Potent Anticancer Agents through MMP-2/9 Regulation.

Front Biosci (Landmark Ed)

January 2025

Department of Chemistry Education, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea.

In recent years, the role of coenzymes, particularly those from the vitamin B group in modulating the activity of metalloenzymes has garnered significant attention in cancer treatment strategies. Metalloenzymes play pivotal roles in various cellular processes, including DNA repair, cell signaling, and metabolism, making them promising targets for cancer therapy. This review explores the complex interplay between coenzymes, specifically vitamin Bs, and metalloenzymes in cancer pathogenesis and treatment.

View Article and Find Full Text PDF

Variable relative biological effectiveness (RBE) of carbon radiotherapy may be calculated using several models, including the microdosimetric kinetic model (MKM), stochastic MKM (SMKM), repair-misrepair-fixation (RMF) model, and local effect model I (LEM), which have not been thoroughly compared. In this work, we compared how these four models handle carbon beam fragmentation, providing insight into where model differences arise. Monoenergetic and spread-out Bragg peak carbon beams incident on a water phantom were simulated using Monte Carlo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!