Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Three-dimensional (3D) mesostructured semiconductors show promising properties and applications; however, to date, few methods exist to synthesize or fabricate such materials. Metal can diffuse along semiconductor surfaces, and even trace amounts can change the surface behavior. We exploited the phenomena for 3D mesoscale lithography, by showing one example where iterated deposition-diffusion-incorporation of gold over silicon nanowires forms etchant-resistant patterns. This process is facet-selective, producing mesostructured silicon spicules with skeletonlike morphology, 3D tectonic motifs, and reduced symmetries. Atom-probe tomography, coupled with other quantitative measurements, indicates the existence and the role of individual gold atoms in forming 3D lithographic resists. Compared to other more uniform silicon structures, the anisotropic spicule requires greater force for detachment from collagen hydrogels, suggesting enhanced interfacial interactions at the mesoscale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1257278 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!