We are currently experiencing shifts in climate at rates not previously recorded. One important aspect of this change is a tendency toward extremes--extremes in temperature and moisture, both within and among years. Numerous studies focus on the physiological consequences of environmental change, especially in terms of ectothermic taxa's thermal regime and use of habitat. For many species, though, cognitive responses may be a means of response to environmental perturbation. However, the effects of environmental change on the general mechanisms of cognitive processes and their implications for larger phenomena are seldom examined. Moreover, at a larger scale, we do not fully understand the features of the environment that might select for cognitive enhancements or their mechanisms, making us unable to accurately predict which species might experience the most severe response to environmental change and in which environments. This symposium brought together scientists from numerous disciplines to examine the role of cognition in how organisms cope with changing environments. We cover topics from the perspectives of the physiological mechanisms underlying and driving cognition to the complexity of individual behavioral responses in changing environments to emergent large-scale processes influencing species' abilities to respond to such change. Our ultimate goals are to explore how animals use cognition to cope with rapid environmental change, how such coping mechanisms "scale up" to affect ecological and evolutionary patterns, and how we might determine which features of the environment have been (and will become) most important for the conservation of biodiversity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/icb/icv068 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!