Background: O(6)-methyl-guanine-methyl-transferase (MGMT) silencing by promoter methylation may identify cancer patients responding to the alkylating agents dacarbazine or temozolomide.
Patients And Methods: We evaluated the prognostic and predictive value of MGMT methylation testing both in tumor and cell-free circulating DNA (cfDNA) from plasma samples using an ultra-sensitive two-step digital PCR technique (methyl-BEAMing). Results were compared with two established techniques, methylation-specific PCR (MSP) and Bs-pyrosequencing.
Results: Thresholds for MGMT methylated status for each technique were established in a training set of 98 glioblastoma (GBM) patients. The prognostic and the predictive value of MGMT methylated status was validated in a second cohort of 66 GBM patients treated with temozolomide in which methyl-BEAMing displayed a better specificity than the other techniques. Cutoff values of MGMT methylation specific for metastatic colorectal cancer (mCRC) tissue samples were established in a cohort of 60 patients treated with dacarbazine. In mCRC, both quantitative assays methyl-BEAMing and Bs-pyrosequencing outperformed MSP, providing better prediction of treatment response and improvement in progression-free survival (PFS) (P < 0.001). Ability of methyl-BEAMing to identify responding patients was validated in a cohort of 23 mCRC patients treated with temozolomide and preselected for MGMT methylated status according to MSP. In mCRC patients treated with dacarbazine, exploratory analysis of cfDNA by methyl-BEAMing showed that MGMT methylation was associated with better response and improved median PFS (P = 0.008).
Conclusions: Methyl-BEAMing showed high reproducibility, specificity and sensitivity and was applicable to formalin-fixed paraffin-embedded tissues and cfDNA. This study supports the quantitative assessment of MGMT methylation for clinical purposes since it could refine prediction of response to alkylating agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/annonc/mdv272 | DOI Listing |
Clin Epigenetics
January 2025
Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, U Nemocnice 499/2, 128 00, Prague, Czech Republic.
Background: Glioblastoma is the commonest malignant brain tumor and has a very poor prognosis. Reduced expression of the MGMT gene (10q26.3), influenced primarily by the methylation of two differentially methylated regions (DMR1 and DMR2), is associated with a good response to temozolomide treatment.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Electronical Engineering, Yaşar University, Bornova, İzmir, Turkey.
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Department of Pathology, University of Yamanashi, Yamanashi 409-3898, Japan.
The latest World Health Organization (WHO) classification of central nervous system tumors (WHO2021/5th) has incorporated molecular information into the diagnosis of each brain tumor type including diffuse glioma. Therefore, an artificial intelligence (AI) framework for learning histological patterns and predicting important genetic events would be useful for future studies and applications. Using the concept of multiple-instance learning, we developed an AI framework named GLioma Image-level and Slide-level gene Predictor (GLISP) to predict nine genetic abnormalities in hematoxylin and eosin sections: , , mutations, promoter mutations, homozygous deletion (CHD), amplification (amp), 7 gain/10 loss (7+/10-), 1p/19q co-deletion, and promoter methylation.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
January 2025
From the Department of Neuroradiology (G.B., N.H., F.D.v.D., A.B., Z.K.), University Hospital Zürich, Zürich, Switzerland.
Background And Purpose: Whether differences in the O-methylguanine-DNA methyltransferase () promoter methylation status of glioblastoma (GBM) are reflected in MRI markers remains largely unknown. In this work, we analyze the ADC in the perienhancing infiltration zone of GBM according to the corresponding status by using a novel distance-resolved 3D evaluation.
Materials And Methods: One hundred one patients with wild-type GBM were retrospectively analyzed.
Mol Biol Rep
January 2025
Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India.
Background: Differential DNA methylation in the promoter region of tumour suppressor genes leads to gene function silencing.
Materials And Methods: In this study, we aimed to evaluate the salivary promoter methylation of EDNRB, MGMT and TIMP3 genes in H&NC patients (n = 100), premalignant lesions patients (n = 25) and healthy controls (n = 50). Blood and saliva samples were collected from all three groups and 20 concomitant tumour tissues were collected from the H&NC patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!