Cytotoxicity and genotoxicity of urban particulate matter in mammalian cells.

Mutagenesis

Centre for Occupational and Environmental Health, Centre for Epidemiology, Institute of Population Health, Faculty of Medical and Human Sciences, The University of Manchester, Ellen Wilkinson Building, Manchester M13 9PL, UK, Gentronix Ltd, BioHub at Alderley Park, Alderley Edge, Macclesfield, Cheshire, SK10 4TG, UK, School of Environment and Life Sciences, University of Salford, Cockcroft Building, Salford M5 4WT, UK

Published: September 2015

Ambient air particulate matter (PM)-associated reactive oxygen species (ROS) have been linked to a variety of altered cellular outcomes. In this study, three different PM samples from diesel exhaust particles (DEPs), urban dust standard reference material SRM1649a and air collected in Manchester have been tested for their ability to oxidise DNA in a cell-free assay, to increase intracellular ROS levels and to induce CYP1A1 gene expression in mammalian cells. In addition, the cytotoxicity and genotoxicity of PM were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and alkaline comet assay, respectively. All PM samples catalysed the Fenton reaction in a cell-free assay, but only DEP resulted in the generation of ROS as measured by dichlorodihydrofluorescein diacetate oxidation in mammalian cells. However, there was no evidence that increased ROS was a consequence of polycyclic aromatic hydrocarbon metabolism via CYP1A1 induction as urban dust, the Manchester dust samples but not DEP-induced CYP1A1 expression. Urban dust was more cytotoxic in murine embryonic fibroblasts (MEFs) than the other PM samples and also induced expression of GADD45a in the GreenScreen Human Cell assay without S9 activation suggesting the presence of a direct-acting genotoxicant. Urban dust and DEP produced comparable levels of DNA damage, as assessed by the alkaline comet assay, in MEFs at higher levels than those induced by Manchester PM. In conclusion, results from the cytotoxic and genotoxic assays are not consistent with ROS production being the sole determinant of PM-induced toxicity. This suggests that the organic component can contribute significantly to this toxicity and that further work is required to better characterise the extent to which ROS and organic components contribute to PM-induced toxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4540788PMC
http://dx.doi.org/10.1093/mutage/gev025DOI Listing

Publication Analysis

Top Keywords

urban dust
16
mammalian cells
12
cytotoxicity genotoxicity
8
particulate matter
8
cell-free assay
8
alkaline comet
8
comet assay
8
pm-induced toxicity
8
ros
6
assay
6

Similar Publications

Cement dust is a primary contributor to air pollution and is responsible for causing numerous respiratory diseases. The impact of cement dust exposure on the respiratory health of residents is increasing owing to the demand for construction associated with urbanization. Long-term inhalation of cement dust leads to a reduction in lung function, alterations in airway structure, increased inhalation and exhalation resistance, and heightened work of breath.

View Article and Find Full Text PDF

Urbanization and industrialization have drastically increased ambient air pollution in urban areas globally from vehicle emissions, solid fuel combustion and industrial activities leading to some of the worst air quality conditions. Air pollution in Ghana causes approximately 28,000 premature deaths and disabilities annually, ranking as a leading cause of mortality and disability-adjusted life years. This study evaluated the annual concentrations of PM NO and O in the ambient air of 57 cities in Ghana for two decades using historical and forecasted data from satellite measurements.

View Article and Find Full Text PDF

Potentially toxic elements (PTEs) and microplastics (MPs) in the atmosphere raise widespread apprehension due to their association with the ecosystem and public health. The accumulation of airborne MPs and PTEs was analyzed in leaves, and the Pollution Index (PI) was calculated along an industrial, residential, and rural gradient in Bangladesh. Only polyethylene terephthalate (PET) was found in the highest concentration in industrial areas compared to other areas.

View Article and Find Full Text PDF

The quality of indoor air is dependent on a number of factors, including the presence of microorganisms that colonize the building materials. The potential for health risks associated with microbial contamination is a significant concern during the renovation of buildings. The aim of this study was to assess the impact of two reconstruction methods for historic buildings on air quality.

View Article and Find Full Text PDF

Urban dust samples were collected in Moscow (Russia) in June 2021. The samples were collected in three functional zones of Moscow (traffic, residential, and recreational) and included air microparticles, leaf dust, and paved dust. Data on the taxonomic composition of bacterial communities were obtained for dust samples, and their functional characteristics were predicted using PICRUSt2 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!