Tumor Suppressor Activity of Klotho in Breast Cancer Is Revealed by Structure-Function Analysis.

Mol Cancer Res

The Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel. Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Published: October 2015

Unlabelled: Klotho is a transmembrane protein containing two internal repeats, KL1 and KL2, both displaying significant homology to members of the β-glycosidase family. Klotho is expressed in the kidney, brain, and various endocrine tissues, but can also be cleaved and act as a circulating hormone. Klotho is an essential cofactor for binding of fibroblast growth factor 23 (FGF23) to the FGF receptor and can also inhibit the insulin-like growth factor-1 (IGF-1) pathway. Data from a wide array of malignancies indicate klotho as a tumor suppressor; however, the structure-function relationships governing its tumor suppressor activities have not been deciphered. Here, the tumor suppressor activities of the KL1 and KL2 domains were examined. Overexpression of either klotho or KL1, but not of KL2, inhibited colony formation by MCF-7 and MDA-MB-231 cells. Moreover, in vivo administration of KL1 was not only well tolerated but significantly slowed tumor formation in nude mice. Further studies indicated that KL1, but not KL2, interacted with the IGF-1R and inhibited the IGF-1 pathway. Based on computerized structural modeling, klotho constructs were generated in which critical amino acids have been mutated. Interestingly, the mutated proteins retained their tumor suppressor activity but showed reduced ability to modulate FGF23 signaling. These data indicate differential activity of the klotho domains, KL1 and KL2, in breast cancer and reveal that the tumor suppressor activities of klotho can be dissected from its physiologic activities.

Implications: These findings pave the way for a rational design of safe klotho-based molecules for the treatment of breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1541-7786.MCR-15-0141DOI Listing

Publication Analysis

Top Keywords

tumor suppressor
24
kl1 kl2
20
breast cancer
12
suppressor activities
12
klotho
9
suppressor activity
8
activity klotho
8
igf-1 pathway
8
tumor
7
kl1
6

Similar Publications

Germline inactivating mutations of the SLC25A1 gene contribute to various human disorders, including Velocardiofacial (VCFS), DiGeorge (DGS) syndromes and combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic disease characterized by the accumulation of 2-hydroxyglutaric acid (2HG). The mechanisms by which SLC25A1 loss leads to these syndromes remain largely unclear. Here, we describe a mouse model of SLC25A1 deficiency that mimics human VCFS/DGS and D/L-2HGA.

View Article and Find Full Text PDF

To investigate the functional role of S100A4 in advanced colorectal carcinoma (Ad-CRC) and locally advanced rectal carcinoma (LAd-RC) receiving neoadjuvant chemoradiotherapy (NCRT). We analyzed histopathological and immunohistochemical sections from 150 patients with Ad-CRC and 177 LAd-RC patients treated with NCRT. S100A4 knockout (KO) HCT116 cells were also used.

View Article and Find Full Text PDF

Novel anoikis-related diagnostic biomarkers for aortic dissection based on machine learning.

Sci Rep

December 2024

Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.

Aortic dissection (AD) is one of the most dangerous diseases of the cardiovascular system, which is characterized by acute onset and poor prognosis, while the pathogenesis of AD is still unclear and may affect or even delay the diagnosis of AD. Anchorage-dependent cell death (Anoikis) is a special mode of cell death, which is programmed cell death caused by normal cells after detachment from extracellular matrix (ECM) and has been widely studied in the field of oncology in recent years. In this study, we applied bioinformatics analysis, according to the results of research analysis and Gene Ontology (GO), as well as Kyoto Encyclopedia of Genes and Genomes (KEGG), finally found 3 anoikis-related genes (ARGs) based on machine learning.

View Article and Find Full Text PDF

NSUN2-Mediated R-loop Stabilization as a Key Driver of Bladder Cancer Progression and Cisplatin Sensitivity.

Cancer Lett

December 2024

Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China. Electronic address:

R-loops are critical structures that play pivotal roles in regulating genomic stability and modulating gene expression. This study investigates the interactions between the 5-methylcytosine (mC) methyltransferase NOP2/Sun RNA methyltransferase 2 (NSUN2) and R-loops in the transcriptional dynamics and damage repair process of bladder cancer (BCa) cells. We observed markedly elevated levels of R-loops in BCa cells relative to normal urothelial cells.

View Article and Find Full Text PDF

Vimentin is a ubiquitination and degradation substrate of the ubiquitin ligase KPC1.

Biochem Biophys Res Commun

December 2024

The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, Haifa, 3109601, Israel. Electronic address:

The ubiquitin proteasome system (UPS), driven by ubiquitin as a degradation signal, eliminates, in a highly specific manner, 'abnormal' proteins and proteins that completed their function. This process involves a hierarchical cascade of E1, E2, and E3 enzymes. The E3 ubiquitin ligases, act as specific receptors that bind their cognate substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!