Emerging drugs for the treatment of bone metastasis.

Expert Opin Emerg Drugs

a 1 Campus Bio-Medico University of Rome, Medical Oncology Department , Via Alvaro del Portillo 200, 00128 Rome, Italy +39 062 254 191 17 ; +39 062 254 119 33;

Published: July 2016

Introduction: Bone metastases are virtually incurable resulting in significant disease morbidity, reduced quality of life and mortality. Bone provides a unique microenvironment whose local interactions with tumor cells offer novel targets for therapeutic interventions. Increased understanding of the pathogenesis of bone disease has led to the discovery and clinical utility of bone-targeted agents other than bisphosphonates and denosumab, currently, the standard of care in this setting.

Areas Covered: In this review, we present the recent advances in molecular targeted therapies focusing on therapies that inhibit bone resorption and/or stimulate bone formation and novel anti-tumoral agents that exerts significant effects on skeletal metastases, nowadays available in clinical practice or in phase of development.

Expert Opinion: New emergent bone target therapies radium-223, mTOR inhibitors, anti-androgens have demonstrated the ability to increase overall survival in bone metastatic patients, other compounds, such as ET-1 and SRC inhibitors, up to now failed to clearly confirm in clinical trials their promising preclinical data.

Download full-text PDF

Source
http://dx.doi.org/10.1517/14728214.2015.1062876DOI Listing

Publication Analysis

Top Keywords

bone
8
emerging drugs
4
drugs treatment
4
treatment bone
4
bone metastasis
4
metastasis introduction
4
introduction bone
4
bone metastases
4
metastases virtually
4
virtually incurable
4

Similar Publications

Regulation of T Cell Glycosylation by MXene/β-TCP Nanocomposite for Enhanced Mandibular Bone Regeneration.

Adv Healthc Mater

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.

View Article and Find Full Text PDF

Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity.

View Article and Find Full Text PDF

Variations in the development of carpal bones are uncommon, with the scaphoid bone typically forming from the fusion of the os centrale carpi and the radial chondrification center during embryogenesis. A bipartite scaphoid is a rare congenital disorder that occurs when these ossification centers fail to fuse, with a prevalence ranging from 0.1% to 0.

View Article and Find Full Text PDF

Background: Some mammals including the swine carry a fibrous vestigial clavicle, but a subclavius muscle (SBM) extends between the first rib and the supraspinatus muscle surface fascia. We aimed to examine development of the SBM and clavicle for finding a specific factor to provide the curious morphology.

Materials And Methods: Histological sections of early- and midterm fetuses of the swine, human and mouse were observed and compared at the almost same morphological stage.

View Article and Find Full Text PDF

3D Printing of a Self-Healing, Bioactive, and Dual-Cross-Linked Polysaccharide-Based Composite Hydrogel as a Scaffold for Bone Tissue Engineering.

ACS Appl Bio Mater

January 2025

Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.

Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!