Direct benefits are considered to be the driving force of high female mating rates, yet species in which females do not receive material resources from males still experience increased fitness from mating frequently. One hypothesis suggests that substances within the ejaculate may boost survival or offspring production. If these materials are limiting to females, they will require continual renewal via mating and could provide a functional understanding of how high mating rates lead to increased female fitness. Using the Texas field cricket, Gryllus texensis, we investigated the sexual transfer of prostaglandin E2, an important mediator of invertebrate reproduction. We determined that like other gryllid species, males include significant quantities of prostaglandin E2 (PGE2) and its precursor molecule, arachidonic acid (AA), within the spermatophore. These components are passed to females during copulation and then stored within the spermatheca. We then tested the novel hypothesis that PGE2 is ephemerally available after mating and that females must frequently mate to maintain access to this limiting compound. We found that PGE2 within the spermatheca is indeed depleted through time, with only a small amount remaining 1 week after mating, but that its presence can be maintained at high quantities and for prolonged periods of time by remating. Our results support the hypothesis that high female mating rates increase the amount and availability of PGE2 throughout the breeding season, which could explain the positive relationship between female mating rate and fecundity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.121327 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!