Background/aims: New strategies for the prevention and treatment of cirrhosis are urgently needed for improving therapeutic outcome. A role of microRNAs (miRNAs) in the pathogenesis of cirrhosis has been recently acknowledged, whereas the exact involved miRNAs as well as the associated molecular signaling pathways have not been determined. Specifically, the studies on the relationship between miR-22 and bone morphogenic protein 7 (BMP7) in the development of cirrhosis are lacking.
Methods: We examined the correlation of the levels of miR-22 and bone morphogenic protein 7 (BMP7) in the liver biopsies from patients with cirrhosis. We examined overexpression or suppression of miR-22 on BMP7 in hepatocytes. We examined the binding of miR-22 to the 3'-UTR of BMP7 mRNA. Finally, in a carbon tetrachloride (CCl4)-induced cirrhosis model in mice, we gave mice adeno-associated viruses carrying antisense of miR-22, and examined its effects on BMP7 levels and the hallmarks of cirrhosis.
Results: The levels of miR-22 and BMP7 in the liver biopsies from patients were strongly and inversely correlated. MiR-22 inhibited BMP7 expression in hepatocytes, through directly binding the 3'-UTR of BMP7 mRNA. Expression of antisense miR-22 significantly attenuated the levels of liver fibrosis, portal hypertension and sodium retention caused by CCl4, possibly through upregulation of BMP7.
Conclusions: MiR-22 promotes the development of cirrhosis through BMP7 suppression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000430276 | DOI Listing |
Alveolar type 2 (AT2) cells maintain lung health by acting as stem cells and producing pulmonary surfactant. AT2 dysfunction underlies many lung diseases, including interstitial lung disease (ILD), in which some inherited forms result from the mislocalization of surfactant protein C (SFTPC) variants. Lung disease modeling and dissection of the underlying mechanisms remain challenging due to complexities in deriving and maintaining human AT2 cells ex vivo.
View Article and Find Full Text PDFRespirology
January 2025
School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia.
Background And Objective: Asthma-COPD overlap (ACO) is characterized by patients exhibiting features of both asthma and COPD. Currently, there is no specific treatment for ACO. This study aimed to investigate the therapeutic potential of targeting CD131, a shared receptor subunit for IL-3, IL-5 and GM-CSF, in ACO development and in preventing acute viral exacerbations.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China. Electronic address:
Diabetic nephropathy (DN) is a major complication of diabetes and a leading cause of renal failure. While valsartan has been shown to alleviate DN clinically, its antifibrotic mechanisms require further investigation. This study used a transcriptomics-driven approach, integrating in vitro, Machine Learning, molecular docking, dynamics simulations and RT-qCPR to identify key antifibrotic targets.
View Article and Find Full Text PDFExp Clin Endocrinol Diabetes
January 2025
Department of Molecular Medicine, University of Pavia, Pavia, Italy.
The issue of a possible association between Shwachman-Diamond Syndrome and diabetes has been debated for many years. This review updates the Italian Shwachman-Diamond registry, confirming our previous findings that suggest that these patients might be at higher risk of developing diabetes, particularly type 1. These data are of relevance in the clinical follow-up of patients in everyday life, emphasizing the need for early diagnosis and timely intervention.
View Article and Find Full Text PDFBioorg Chem
January 2025
State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201 China; University of Chinese Academy of Sciences, Beijing 100049 China. Electronic address:
Non-alcoholic fatty liver disease (NAFLD), also known as metabolic dysfunction- associated with fatty liver disease (MAFLD), is one of the most prevalent chronic liver diseases globally. NAFLD is characterized by the accumulation of liver fat unrelated to excessive alcohol consumption. Non-alcoholic steatohepatitis (NASH) is the disease progression of NAFLD and could develop into cirrhosis and hepatocellular carcinoma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!