Evolutionary optimization of the catalytic effectiveness of an enzyme.

Biochemistry

Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138.

Published: November 1989

The kinetic and thermodynamic features of reactions catalyzed by present-day enzymes appear to be the consequence of the evolution of these proteins toward maximal catalytic effectiveness. These features are identified and analyzed (in detail for one substrate-one product enzymes) by using ideas that link the energetics of the reaction catalyzed by an enzyme to the maximization of its catalytic efficiency. A catalytically optimized enzyme will have a value for the "internal" equilibrium constant (Kint, the equilibrium constant between the substrates and the products of the enzyme when all are bound productively) that depends on how close to equilibrium the enzyme maintains its reaction in vivo. Two classes are apparent. For an enzyme that operates near equilibrium, the catalytic efficiency is sensitive to the value of Kint, and the optimum value of Kint is near unity. For an enzyme that operates far from equilibrium, the catalytic efficiency is less sensitive to the value of Kint, and Kint assumes a value that ensures that the rate of the chemical transformation is equal to the rate of product release. In each of these cases, the internal thermodynamics is "dynamically matched", where the concentrations of substrate- and product-containing complexes are equal at the steady state in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00450a009DOI Listing

Publication Analysis

Top Keywords

catalytic efficiency
12
catalytic effectiveness
8
equilibrium constant
8
enzyme operates
8
operates equilibrium
8
equilibrium catalytic
8
efficiency sensitive
8
sensitive kint
8
enzyme
7
catalytic
5

Similar Publications

ENPP-1 is a transmembrane enzyme involved in nucleotide metabolism, and its overexpression is associated with various cancers, making it a potential therapeutic target and biomarker for early tumor diagnosis. Current detection methods for ENPP-1 utilize a colorimetric probe, , which has significant limitations in sensitivity. Here, we present probe , the first nucleic acid-based chemiluminescent probe designed for rapid and highly sensitive detection of ENPP-1 activity.

View Article and Find Full Text PDF

Understanding the interplay between gasotransmitters is essential for unlocking their therapeutic potential. However, achieving spatiotemporally controlled co-delivery to target cells remains a significant challenge. Herein, we propose an innovative strategy for the intracellular co-delivery of carbon monoxide (CO) and nitric oxide (NO) gasotransmitters under clinically relevant wavelengths.

View Article and Find Full Text PDF

Distortion can play crucial roles in influencing structures and properties, as well as enhancing reactivity or selectivity in many chemical and biological systems. The distortion/interaction or activation-strain model is a popular and powerful method for deciphering the origins of activation energies, in which distortion and interaction energies dictate an activation energy. However, decomposition of local distortion energy at the atomic scale remains less clear and straightforward.

View Article and Find Full Text PDF

In processes such as electrodialysis, the applied electrical potential is constrained by concentration polarization at the membrane/solution interface. This polarization, which intensifies at higher current densities, impedes ion transport efficiency and may lead to problems such as salt precipitation, membrane degradation, and increased energy consumption. Therefore, understanding concentration polarization is essential for enhancing membrane performance, improving efficiency, and reducing operational costs.

View Article and Find Full Text PDF

Isomer-Effects of Aminophenol Decorated Gold Nanoclusters for HO Photoproduction via Two-Step One-Electron Oxygen Reduction Reaction.

Small

January 2025

Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China.

Gold (Au) nanoclustersare promising photocatalysts for biomedicine, sensing, and environmental remediation. However, the short carrier lifetime, inherent instability, and unclear charge transfer mechanism hinder their application. Herein, the Au nanoclusters decorated with three different isomers of o-Aminophenol, m-Aminophenol, and p-Aminophenol are synthesized, namely o-Au, m-Au, and p-Au, which achieve efficient hydrogen peroxide (HO) photoproduction through two-step one-electron oxygen reduction reaction (ORR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!