Intermittent Stretching and Osteogenic Differentiation of Bone Marrow Derived Mesenchymal Stem Cells via the p38MAPK-Osterix Signaling Pathway.

Cell Physiol Biochem

The Key Laboratory of Oral Medicine, Shandong Province Education Department; Department of Stomatology, Affiliated Hospital of Qingdao University; Qingdao, People's Republic of China.

Published: March 2016

Aims: The relationship between the p38MAPK signaling pathway and osterix in osteogenic differentiation of BMMSCs subjected to intermittent stretching was investigated.

Methods: BMMSCs derived from C57BL/6J mice were divided into the following groups: 1) control, 2) stretch, and 3) SB203580+stretch (SB203580 is a p38MAPK signal pathway inhibitor). BMMSCs were exposed to an intermittent mechanical strain of 0.8% (8000μ strain) at 0.5 Hz, twice a day for 30 min each application. BMMSCs were harvested on days 1, 3, and 5 post-treatment. The expression of ALP, COL I, OCN, and osterix mRNA was assessed utilizing RT-PCR while the expression of P-p38MAPK and osterix protein was assessed by Western blot analysis. The osterix gene in mouse BMMSCs was knocked down using RNAi technology and its protein expression was also assessed by Western blot. RT-PCR was used to detect ALP, COL I, and OCN mRNA expression.

Results: Intermittent stretching was found to promote expression of ALP, COL I, OCN, and osterix mRNA. Silencing the osterix gene was found to reduce levels of ALP, COL I, and OCN mRNA. Western blot analysis demonstrated that the levels of osterix and P-p38MAPK proteins in the stretch group were significantly higher than in the control group (P<0.05). There was less expression of ALP, COL I, OCN, and osterix mRNA in the SB203580+stretch group than in the control and stretch groups.

Conclusions: Data demonstrate that intermittent stretching promotes osteogenic differentiation of BMMSCs, and the p38MAPK-osterix pathway has an important role in the control of osteogenesis-related gene expression.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000430275DOI Listing

Publication Analysis

Top Keywords

alp col
16
col ocn
16
intermittent stretching
12
western blot
12
osteogenic differentiation
8
signaling pathway
8
expression alp
8
ocn osterix
8
osterix mrna
8
assessed western
8

Similar Publications

Differential expression of osteoblast-like cells on self-organized titanium dioxide nanotubes.

J Dent Sci

December 2024

Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.

Background/purpose: Titanium dioxide nanotube (TNT) structures have been shown to enhance the early osseointegration of dental implants. Nevertheless, the optimal nanotube diameter for promoting osteogenesis remains unclear due to variations in cell types and manufacture of nanotubes. This study aimed to evaluate the differences in MC3T3-E1 and Saos-2 cells behavior on nanotubes of varying diameters.

View Article and Find Full Text PDF

Effect of nanoparticulate CaCO on the biological properties of calcium silicate cement.

Sci Rep

January 2025

Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.

This study aimed to evaluate the effects of nanoparticulate CaCO (NPCC) on the biological properties of calcium silicate-based cements (CSCs), including their cytotoxicity, in vitro osteogenic activity, and interactions with rat femur tissue. The average size of NPCC was 90.3±26.

View Article and Find Full Text PDF

Melatonin (MT), an endogenous hormone secreted by pineal gland, has the sedative, anti-inflammatory and antioxidant functions. However, there are few studies on whether MT affects the proliferation and differentiation of antler chondrocytes. The present study investigated the influences of MT on the proliferation and differentiation of antler chondrocytes, explored its regulation on runt-related transcription factor 2 (RUNX2), NOTCH1 and sonic hedgehog (SHH) signaling, and elucidated their interplays.

View Article and Find Full Text PDF

380 MPa-30% grade biodegradable Zn-Mn-Mg-Ca alloy: Bimodal grain structure, large work-hardening strain, and enhanced biocompatibility.

Acta Biomater

December 2024

Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, China. Electronic address:

Strain softening is a common issue for high-strength biodegradable Zn alloys. We developed Zn-0.6Mn-0.

View Article and Find Full Text PDF

The burgeoning field of nano-bone regeneration is yet to establish a definitive optimal particle size for nanocarriers. This study investigated the impacts of nanocarrier's particle size on the bone regeneration efficacy of fingolimod (FTY720)-loaded nanoemulsions. Two distinct particle sizes (60 and 190 nm, designated as NF60 and NF190, respectively) were produced using low-energy and high-energy emulsion techniques, maintaining a consistent surfactant, co-surfactant, and oil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!