The Decay of Motor Memories Is Independent of Context Change Detection.

PLoS Comput Biol

School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America; Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America.

Published: June 2015

When the error signals that guide human motor learning are withheld following training, recently-learned motor memories systematically regress toward untrained performance. It has previously been hypothesized that this regression results from an intrinsic volatility in these memories, resulting in an inevitable decay in the absence of ongoing error signals. However, a recently-proposed alternative posits that even recently-acquired motor memories are intrinsically stable, decaying only if a change in context is detected. This new theory, the context-dependent decay hypothesis, makes two key predictions: (1) after error signals are withheld, decay onset should be systematically delayed until the context change is detected; and (2) manipulations that impair detection by masking context changes should result in prolonged delays in decay onset and reduced decay amplitude at any given time. Here we examine the decay of motor adaptation following the learning of novel environmental dynamics in order to carefully evaluate this hypothesis. To account for potential issues in previous work that supported the context-dependent decay hypothesis, we measured decay using a balanced and baseline-referenced experimental design that allowed for direct comparisons between analogous masked and unmasked context changes. Using both an unbiased variant of the previous decay onset analysis and a novel highly-powered group-level version of this analysis, we found no evidence for systematically delayed decay onset nor for the masked context change affecting decay amplitude or its onset time. We further show how previous estimates of decay onset latency can be substantially biased in the presence of noise, and even more so with correlated noise, explaining the discrepancy between the previous results and our findings. Our results suggest that the decay of motor memories is an intrinsic feature of error-based learning that does not depend on context change detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4482542PMC
http://dx.doi.org/10.1371/journal.pcbi.1004278DOI Listing

Publication Analysis

Top Keywords

decay onset
20
motor memories
16
context change
16
decay
14
decay motor
12
error signals
12
change detection
8
context-dependent decay
8
decay hypothesis
8
systematically delayed
8

Similar Publications

Objective: This study aims to improve genetic diagnosis in childhood onset epilepsy with neurodevelopmental problems by utilizing RNA sequencing of fibroblasts to identify pathogenic variants that may be missed by exome sequencing and copy number variation analysis.

Methods: We enrolled 41 individuals with childhood onset epilepsy and neurodevelopmental problems who previously had inconclusive genetic testing. Fibroblast samples were cultured and analyzed using RNA sequencing to detect aberrant expression, aberrant splicing, and monoallelic expression using the Detection of RNA Outlier Pipeline (DROP) pipeline.

View Article and Find Full Text PDF

Correlates of Protection Against Symptomatic COVID-19: The CORSER 5 Case-Control Study.

Open Forum Infect Dis

January 2025

Infectious Disease Epidemiology and Analytics G5 Unit, Department of Global Health, Institut Pasteur, Université Paris-Cité, Paris, France.

Background: Establishing correlates of protection often requires large cohorts. A rapid and adaptable case-control study design can be used to identify antibody correlates of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in serum and saliva.

Methods: We designed a case-control study to compare antibody levels between cases of SARS-CoV-2 infection within 5 days of symptom onset and uninfected controls.

View Article and Find Full Text PDF

Densely populated macrocyclic dicobalt sites in ladder polymers for low-overpotential oxygen reduction catalysis.

Nat Commun

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065 Chengdu, China.

Dual-atom catalysts featuring synergetic dinuclear active sites, have the potential of breaking the linear scaling relationship of the well-established single-atom catalysts for oxygen reduction reaction; however, the design of dual-atom catalysts with rationalized local microenvironment for high activity and selectivity remains a great challenge. Here we design a bisalphen ladder polymer with well-defined densely populated binuclear cobalt sites on Ketjenblack substrates. The strong electron coupling effect between the fully-conjugated ladder structure and carbon substrates enhances the electron transfer between the cobalt center and oxygen intermediates, inducing the low-to-high spin transition for the 3d electron of Co(II).

View Article and Find Full Text PDF

Inhibition of return (IOR) refers to a location repetition cost typically observed when signaling the detection of or localizing sequentially presented stimuli repeating or changing their location. In discrimination tasks, however, IOR is often reduced or even absent; here, effects of binding and retrieval are thought to take place. Information is bound into an event file, which upon feature repetition causes retrieval, leading to partial repetition costs.

View Article and Find Full Text PDF

A new hypothesis to explain disease dominance.

Trends Genet

January 2025

Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Hessen, 61231, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Hessen, 61231, Germany; Excellence Cluster Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany. Electronic address:

The onset and progression of dominant diseases are thought to result from haploinsufficiency or dominant negative effects. Here, we propose transcriptional adaptation (TA), a newly identified response to mRNA decay, as an additional cause of some dominant diseases. TA modulates the expression of so-called adapting genes, likely via mRNA decay products, resulting in genetic compensation or a worsening of the phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!