Epigenetic dysregulation has been associated with cognitive decline and Alzheimer's disease. The present study investigated associations between common SNPs in genes regulating DNA methylation and age-related changes in cognitive decline in two independent prospective cohorts of patients suffering from mild cognitive impairment. An association between the rs1187120 SNP in DNMT3A and annual decline in cognitive functioning was discovered and replicated, suggesting that DNMT3A moderates cognitive decline in subjects with mild cognitive impairment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2217/epi.15.22 | DOI Listing |
Front Neurol
January 2025
Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States.
White matter hyperintensities (WMHs) are commonly detected on T2-weighted magnetic resonance imaging (MRI) scans, occurring in both typical aging and Alzheimer's disease (AD). Despite their frequent appearance and their association with cognitive decline in AD, the molecular factors contributing to WMHs remain unclear. In this study, we investigated the transcriptomic profiles of two commonly affected brain regions with coincident AD pathology-frontal subcortical white matter (frontal-WM) and occipital subcortical white matter (occipital-WM)-and compared with age-matched cognitively intact controls.
View Article and Find Full Text PDFBrain Commun
January 2025
Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela (USC), Santiago de Compostela 15782, Spain.
Previous research has revealed patterns of brain atrophy in subjective cognitive decline, a potential preclinical stage of Alzheimer's disease. However, the involvement of myelin content and microstructural alterations in subjective cognitive decline has not previously been investigated. This study included three groups of participants recruited from the Compostela Aging Study project: 53 cognitively unimpaired adults, 16 individuals with subjective cognitive decline and hippocampal atrophy and 70 with subjective cognitive decline and no hippocampal atrophy.
View Article and Find Full Text PDFFront Aging Neurosci
January 2025
Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Purpose: Functional near-infrared spectroscopy (fNIRS) has shown feasibility in evaluating cognitive function and brain functional connectivity (FC). Therefore, this fNIRS study aimed to develop a screening method for subjective cognitive decline (SCD) and mild cognitive impairment (MCI) based on resting-state prefrontal FC and neuropsychological tests via machine learning.
Methods: Functional connectivity data measured by fNIRS were collected from 55 normal controls (NCs), 80 SCD individuals, and 111 MCI individuals.
Front Neuroinform
January 2025
Department of Computer Science and Engineering, Institute of Technology, Nirma University, Gujarat, India.
Introduction: The prevalence of age-related brain issues has risen in developed countries because of changes in lifestyle. Alzheimer's disease leads to a rapid and irreversible decline in cognitive abilities by damaging memory cells.
Methods: A ResNet-18-based system is proposed, integrating Depth Convolution with a Squeeze and Excitation (SE) block to minimize tuning parameters.
Toxicol Res (Camb)
February 2025
Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijn 2 Road, Shanghai 200025, China.
The latest studies have demonstrated that aberrant expression of microRNA-146a is related to cognitive decline. The rs57095329 polymorphism occurring in the miR-146a promoter modulates its expression and causes downstream pathogenicity. A case-control study in a Chinese Han population was established to investigate the genetic association between the miR-146a rs57095329 polymorphism and postoperative cognitive dysfunction (POCD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!